Analysis of Test Day Milk Yield by Random Regression Models and Evaluation of Persistency in Iranian Dairy Cows
Subject Areas : CamelM. Elahi Torshizi 1 , A.A. Aslamenejad 2 , M.R. Nassiri 3 , H. Farhangfar 4 , J. Solkner 5 , M. Kovac 6 , G. Meszaros 7 , S. Malovrh 8
1 - Department of Animal Science, Mashhad Branch, Islamic Azad University, Mashhad, Iran
2 - Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashahd, Iran
3 - Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashahd, Iran
4 - Department of Animal Science, Faculty of Agriculture, Birjand University, Birjand, Iran
5 - Department of Sustainable Agricultural Systems, University of Natural Resources and Applied Life Science, Vienna, Austria
6 - Department of Animal Science, Biotechnical Faculty, University of Ljubljana, 1230, Domžale, Slovenia
7 - Department of Sustainable Agricultural Systems, University of Natural Resources and Applied Life Science, Vienna, Austria
8 - Department of Animal Science, Biotechnical Faculty, University of Ljubljana, 1230, Domžale, Slovenia
Keywords:
Abstract :
Ali T.E. and Schaeffer L.R. (1987). Accounting for covarainces among test day milk yields in dairy cows. Can. J. Anim. Sci. 67, 637-644.
Biassus I.D.O., Cobuci J.A., Costa J.A., Rorato P.R.N., Neto J.B. andCardoso L.L. (2010). Persistence in milk, fat and protein production of primiparous Holstein cows by random regression models. BrazilianJ. Zootec. 39(12), 2617-2624.
Cobuci J.A., Euclydes R.F., Costa C.N., Torres R.A.andCarmenn S.P. (2007). Genetic evaluation for persistency of lactation in Holstein cows using a random regression model. Gene. Mol. Biol. 30, 349-355.
Costa C.N., De Melo C., Packer I.U., Freitas A., Teixeira N.andCobuci J.A. (2008). Genetic parameters for test day milk yield of first lactation Holstein cows estimated by random regression using Legendre polynomials. R. Bras. Zootec. 4, 602-608.
Dekkers I.C.M., Jamrozik J., Hag J.H., Schaeffer L.R. andWeersink A. (1996). Genetic and economic evaluation of persistency in dairy cattle. Workshop on genetic improvement of functional traits in cattle. Gembloux, Belgium, Interbull Bulletin. 12, 97-102.
Druet T., Jaffrézic F. andDucrocq V. (2003). Modeling of lactation curves and estimation of genetic parameters for first lactation test–day records of French Holstein cows. J. Dairy Sci. 86,2480-2490.
Dzomba E.F., Nephawe K.A., Maiwashe A.N., Cote S.W.P., Chimonyo M., Banga C.B. Muller C. andDzama K. (2010). Random regression test day model for analysis of dairy cattle production data in South Africa: creating the framewoerk. South African J. Anim. Sci. 40(4), 273-284.
Gengler N. (1996). Persistency of lactation yields: A review. Interbull Bulletin. 12, 97-102.
Groeneveld E., KovacM. and WangT. (2002). PEST User’s Guide and Reference Manual. Version 4.2.3. Department of Animal Science, University of Illinois.
Grossman M., Hartz S.M. andKoops W.J. (1999). Persistency of lactation yield: A novel approach. J. Dairy Sci. 82, 2192-2197.
Jakobsen J.H., Madsen P., Jensen J., Pedersen J., Christensen L.G.andSorensen D.A. (2002). Genetic parameters for milk production and persistency for Danish Holstein estimated in random regression models using REML. J. Dairy Sci. 85,1607-1616.
Jamrozik J. and Schaeffer L. (1997). Estimates of genetic parameters for a test day model with random regression for yield traits of first lactation Holsteins. J. Dairy Sci. 80, 762-770.
Jensen J. (2001). Genetic evaluation of dairy cattle using test day models. J. Dairy. Sci. 84, 2803-2812.
Kirkpatrick M., Lofsvold D.andBulmer M. (1990). Analysis of the inheritance, selection and evolution of growth trajectories. Genetics. 124, 979-993.
Kirkpatrick M., Thompson R. and Hill W.G. (1994). Estimation of covariance structure of traits during growth and aging, illustrated with lactation in dairy cattle. Genet. Res. 64, 57-69.
Kovac M. andGroeneveld E. (2008). VCE-6 User’s Guide and Reference Manual. Version 6. Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Slovenia.
Liu Y.X., Zhang J., Schaeffer L.R., Ynag R.Q. and Zhang W.L. (2006). Short communication: optimal random regression models for milk production in dairy cattle. J. Dairy Sci. 89, 2233-2235.
Olori V.E., Hill W.G., Mcguirk B.J. andBrotherstone S. (1999). Estimating variance components for test day milk records by restricted maximum likelihood with a random regression animal model. Livest. Prod. Sci. 61, 53-63.
SAS. (2005). Statistics Analysis System User’s Guide, (Release 9.1). SAS Institute Inc., Cary, North Carolina, USA.
Schaeffer L.R. (2004). Application of random regression models in animal breeding. Livest. Prod. Sci. 86, 35-45.
Sölkner J. andFuchs W. (1987). A comparison of different measures of persistency with special respect to variation of test-day milk yields. Livest. Prod. Sci. 16, 305-319.
Strabel T., Kopacki W. andSzwaczkowski T. (2001). Genetic evaluation of persistency in random regression test day models. Interbull Bulletin. 27, 189-192.
Swalve H.H. (2000). Theoretical basis and computational methods for different test-day genetic evaluation methods. J. Dairy Sci. 83, 1115-1124.
Togashi K. andLin C.Y. (2006). Selection for milk production and persistency using eigenvectors of the random regression coefficient matrix. J. Dairy Sci. 89,4866-4873.
Togashi K., Lin C.Y., Atagi Y., Hagiya K. andNakanishi T. (2008). Genetic characteristics of Japanese Holstein cows based on multiple lactation random regression test day animal model. J. Dairy Sci. 114, 194-201.
Zimmermann E. andSommer H. (1973). Zum laktationsverlauf von kuhen in hocheistung-sherden und dessen beeinflussung durch nichterbliche faktoren. Zuchtungskunde. 45, 75-88.