ارزیابی نانو و میکروکپسولهای سیلیمارین در شرایط شبیهسازی شده دستگاه گوارش برای رسانش هدفمند در حیوان
Subject Areas : Camelس. یوسفدوست 1 , ف. صمدی 2 , س.م. جعفری 3 , س.س. رمضانپور 4 , ف. گنجی 5 , س. حسنی 6
1 - Department of Animal and Poultry Physiology, Faculty of Animal Science, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
2 - Department of Animal and Poultry Physiology, Faculty of Animal Science, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
3 - Department of Food Materials and Process Design Engineering, Faculty of Food Science and Technology, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
4 - Department of Plant Breeding and Biotechnology, Faculty of Plant Production, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
5 - Department of Biology, Faculty of Science, Golestan University, Gorgan, Iran
6 - Department of Animal and Poultry Physiology, Faculty of Animal Science, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
Keywords: فراصوت, خارمریم, نانو و میکروکپسول, شرایط شبیهسازی شده دستگاه گوارش,
Abstract :
هدف اصلی این مطالعه، مقایسه سرعت رهایش نانو و میکروکپسولهای حاوی عصاره خارمریم در شرایط شبیهسازی شده معدی و رودهای حیوان بود. عصاره با روش امولسیفیکاسیون/ ژلهای شدن داخل آلژینات سدیم کپسوله گردید. اندازه ذره، توان زتا، شاخص پراکندگی، و مورفولوژی نانوکپسولها به کمک تفرق نور پویا و میکروسکوپ الکترونی عبوری بررسی شدند. به علاوه، اثر فراصوت بر خواص نانوکپسول و پروفایل رهایش نانو و میکروکپسولهای حاوی عصاره خار مریم مورد ارزیابی قرار گرفت. نتایج نشان داد که فراصوت با کاهش اندازه کپسولها از 5/657 نانومتر به 1/169 نانومتر منجر به ایجاد ذرات یکنواخت با شاخص پراکندگی پایین گردید. راندمان کپسولاسیون نانوکپسولها 61 درصد محاسبه شد. نانو و میکروکپسولهای آلژینات با محافظت از پلیفنولها در شرایط اسیدی معدی به ترتیب منجر به راهایش 10 و 12 درصد شدند. نانوکپسولها، در محیط شبیهسازی شده روده محتویات خود را سریعتر و به میزان بیشتری آزاد کردند. در مجموع، نانوکپسولهای آلژینات حاوی عصاره خارمریم با راهایش بیش از 90 درصد در محیط شبیهسازی شده روده، با موفقیت تهیه شدند که از این مورد میتوان در اهداف رسانش هدفمند برای مدلهای حیوانی استفاده کرد.
Balcão V.M., Costa C.I., Matos C.M., Moutinho C.G., Amorim M., Pintado M.E., Gomes A.P., Vila M.M. and Teixeira J.A. (2013). Nanoencapsulation of bovine lactoferrin for food and biopharmaceutical applications. Food Hydrocoll. 32, 425-431.
Ball K.R. and Kowdley K.V. (2005). A review of Silybum marianum (milk thistle) as a treatment for alcoholic liver disease. J. Clin. Gastroenterol. 39, 520-528.
Cengiz M., Kutlu H.M., Burukoglu D.D. and Ayhancı A. (2015). A comparative study on the therapeutic effects of silymarin and silymarin-loaded solid lipid nanoparticles on d-GaIN/TNF-α-induced liver damage in balb/c mice. Food Chem. Toxicol. 77, 93-100.
Das S., Roy P., Auddy R.G. and Mukherjee A. (2011). Silymarin nanoparticle prevents paracetamol-induced hepatotoxicity. Int. J. Nanomed. 6, 1291-1301.
De Sousa Lobato K.B., Paese K., Forgearini J.C., Guterres S.S., Jablonski A. and de Oliveira Rios A. (2013). Characterisation and stability evaluation of bixin nanocapsules. Food Chem. 141, 3906-3912.
Deng K., Zhong H., Tian T., Gou Y., Li Q. and Dong L. (2010). Drug release behavior of a pH/temperature sensitive calcium alginate/poly (N-acryloylglycine) bead with core-shelled structure. Express Polym. Lett. 4, 773-780.
El-Samaligy M., Afifi N. and Mahmoud E. (2006). Increasing bioavailability of silymarin using a buccal liposomal delivery system: preparation and experimental design investigation. Int. J. Pharm. 308, 140-148.
Erdinc B., Bowey K. and Neufeld R. (2007). Alginate micro-and nanoparticles are produced by spray-drying for oral delivery of therapeutic peptides and protein. MS Thesis. Queen’s Univ., Kingston, Ontario, Canada.
Fang Z. and Bhandari B. (2010). Encapsulation of polyphenols–a review. Trends. Food Sci. Technol. 21, 510-523.
Garg R. and Gupta G. (2010). Gastroretentive floating microspheres of silymarin: Preparation and in vitro evaluation. Trop. J. Pharm. Res. 9, 59-66.
Ghasemi S., Jafari S.M., Assadpour E. and Khomeiri M. (2017). Production of pectin-whey protein nano-complexes as carriers of orange peel oil. Carbohydr. Polym. 177, 369-377.
Ghayempour S. and Mortazavi S.M. (2015). Preparation and investigation of sodium alginate nanocapsules by different microemulsification devices. J. Appl. Polym. Sci. 132, 1-8.
Ghorbanzade T., Jafari S.M., Akhavan S. and Hadavi R. (2017). Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt. Food Chem. 216, 146-152.
Ghosh A., Biswas S. and Ghosh T. (2011). Preparation and evaluation of silymarin β-cyclodextrin molecular inclusion complexes. J. Young Pharm. 3, 205-210.
González-Paredes A., Clarés-Naveros B., Ruiz-Martínez M.A., Durbán-Fornieles J.J., Ramos-Cormenzana A. and Monteoliva-Sánchez M. (2011). Delivery systems for natural antioxidant compounds: Archaeosomes and archaeosomal hydrogels characterization and release study. Int. J. Pharm. 421, 321-331.
Greenlee H., Abascal K., Yarnell E. and Ladas E. (2007). Clinical applications of Silybum marianum in oncology. Integr. Cancer. Ther. 6, 158-165.
Guzman-Villanueva D., El-Sherbiny I.M., Herrera-Ruiz D. and Smyth H.D. (2013). Design and in vitro evaluation of a new nano-microparticulate system for enhanced aqueous-phase solubility of curcumin. Biomed. Res. Int. 2013, 1-9.
Harris R., Lecumberri E., Mateos-Aparicio I., Mengíbar M. and Heras A. (2011). Chitosan nanoparticles and microspheres for the encapsulation of natural antioxidants extracted from Ilex paraguariensis. Carbohydr. Polym. 84, 803-806.
Khavari A. (2010). Preparation and Characterization of Novel Microcapsules. MS Thesis. Chalmers Univ., Göteborg, Sweden.
Klinkesorn U., Sophanodora P., Chinachoti P., Decker E.A. and McClements D.J. (2006). Characterization of spray-dried tuna oil emulsified in two-layered interfacial membranes prepared using electrostatic layer-by-layer deposition. Food Res. Int. 39, 449-457.
Koksal E., GÜLÇİN İ., Beyza S., Sarikaya Ö. and Bursal E. (2009). In vitro antioxidant activity of silymarin. J. Enzym Inhib. Med .Chem. 24, 395-405.
Kothamasu P., Kanumur H., Ravur N., Maddu C., Parasuramrajam R. and Thangavel S. (2012). Nanocapsules: the weapons for novel drug delivery systems. BioImpacts. 2(2), 71-81.
Lertsutthiwong P., Noomun K., Jongaroonngamsang N., Rojsitthisak P. and Nimmannit U. (2008). Preparation of alginate nanocapsules containing turmeric oil. Carbohydr. Polym. 74, 209-214.
Liu X., Ma Z., Xing J. and Liu H. (2004). Preparation and characterization of amino–silane modified superparamagnetic silica nanospheres. J. Magn. Magn. Mater. 270, 1-6.
Machado A.H., Lundberg D., Ribeiro A.N.J., Veiga F.J., Lindman B.R., Miguel M.G. and Olsson U. (2012). Preparation of calcium alginate nanoparticles using water-in-oil (W/O) nanoemulsions. Langmuir. 28, 4131-4141.
McClements D.J. (2015). Encapsulation, protection, and release of hydrophilic active components: potential and limitations of colloidal delivery systems. Adv. Colloid Interfac. 219, 27-53.
Mokhtari S., Jafari S.M. and Assadpour E. (2017). Development of a nutraceutical nano-delivery system through emulsification / internal gelation of alginate. Food Chem. 229, 286-295.
Mora-Huertas C., Fessi H. and Elaissari A. (2010). Polymer-based nanocapsules for drug delivery. Int. J. Pharm. 385, 113-142.
Natrajan D., Srinivasan S., Sundar K. and Ravindran A. (2015). Formulation of essential oil-loaded chitosan–alginate nanocapsules. J. Food Drug. Anal. 23, 560-568.
Pagar K. and Vavia P. (2013). Rivastigmine-loaded L-lactide-depsipeptide polymeric nanoparticles: decisive formulation variable optimization. Sci. Pharm. 81, 865-888.
Parveen R., Baboota S., Ali J., Ahuja A., Vasudev S.S. and Ahmad S. (2011). Oil based nanocarrier for improved oral delivery of silymarin: in vitro and in vivo studies. Int. J. Pharm. 413, 245-253.
Patil M.N. and Pandit A.B. (2007). Cavitation–a novel technique for making stable nano-suspensions. Ultrason. Sonochem. 14, 519-530.
Pawar S.N. and Edgar K.J. (2012). Alginate derivatization: A review of chemistry, properties and applications. Biomaterials. 33, 3279-3305.
Poli A.L., Batista T., Schmitt C.C., Gessner F. and Neumann M.G. (2008). Effect of sonication on the particle size of montmorillonite clays. J. Colloid Interf. Sci. 325, 386-390.
Reis C.P., Neufeld R., Ribeiro A.J. and Veiga F. (2006). Design of insulin-loaded alginate nanoparticles: Influence of the calcium ion on polymer gel matrix properties. Chem. Ind. Chem. Eng. Q. 12, 47-52.
Reis C.P., Veiga F.J., Ribeiro A.J., Neufeld R.J. and Damgé C. (2008). Nanoparticulate biopolymers deliver insulin orally eliciting pharmacological response. J. Pharm. Sci. 97, 5290-5305.
SAS Institute. (2002). SAS®/STAT Software, Release 9.1. SAS Institute, Inc., Cary, NC. USA.
Singleton V.L., Orthofer R. and Lamuela-Raventós R.M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 299, 152-178.
Sosnik A. (2014). Alginate particles as platform for drug delivery by the oral route: state-of-the-art. ISRN Pharmaceutics. 2014, 1-9.
Surh J., Decker E.A. and McClements D.J. (2006). Influence of pH and pectin type on properties and stability of sodium-caseinate stabilized oil-in-water emulsions. Food Hydrocoll. 20, 607-618.
Wang Q., Gong J., Huang X., Yu H. and Xue F. (2009). In vitro evaluation of the activity of microencapsulated carvacrol against Escherichia coli with K88 pili. J. Appl. Microbiol. 107, 1781-1788.
Wu J.P., Tsai C.C., Yeh Y.L., Lin Y.M., Lin C.C., Day C.H., Shen C.Y., Padma V.V., Pan L.F. and Huang C.Y. (2015). Silymarin accelerates liver regeneration after partial hepatectomy. Evid-Based Compl. Alt. 2015, 1-14.
Yang K.Y., Du Hyeong Hwang A.M.Y., Kim D.W., Shin Y.J., Bae O.N., Kim Y.I., Kim J.O., Yong C.S. and Choi H.G. (2013). Silymarin-loaded solid nanoparticles provide excellent hepatic protection: Physicochemical characterization and in vivo evaluation. Int. J. Nanomed. 8, 3333-3340.
Zhang Y., Gong J., Yu H., Guo Q., Defelice C., Hernandez M., Yin Y. and Wang Q. (2014). Alginate-whey protein dry powder optimized for target delivery of essential oils to the intestine of chickens. Poult. Sci. 93, 2514-2525.
Zhang Y., Wang Q.C., Yu H., Zhu J., de Lange K., Yin Y., Wang Q. and Gong J. (2016). Evaluation of alginate–whey protein microcapsules for intestinal delivery of lipophilic compounds in pigs. J. Sci. Food Agric. 96, 2674-2681.