نانوذرات چیتولیگوساکارید انباشته از آهن وقوع کندرونکروزیس باکتریایی با پوکی استخوان در جوجههای گوشتی را کاهش میدهد
Subject Areas : Camel
1 - Department of Animal Science, Faculty of Agriculture, Bu Ali Sina University, Hamedan, Iran
2 - Department of animal science, Faculy of agriculture, Bu-Ali Sina University
Keywords: آهن, مرغ گوشتی, کندرونکروزیس باکتریایی, چیتولیگوساکارید, لنگی,
Abstract :
مطالعه حاضر برای بررسی اثرات جیره نانوذرات چیتولیگوساکارید انباشته از آهن (Fe-CNP) روی وقوع کندرونکروزیس باکتریایی با پوکس استخوان (BCO) در جوجههای گوشتی انجام شد. 400 جوجه هشت روزه (Ross 308) به چهار تیمار با شش تکرار از 20 پرنده اختصاص یافتند. تمامی جوجهها روی سیستم کفپوش سیمی تا سن 42 روزگی پرورش یافتند. جیره شاهد براساس توصیههای Aviagen به غیر از مکمل آهن فرموله شده بودند. گروههای آزمایشی شامل: 10 میلیگرم/کیلوگرم Fe از Fe-CNP (گروه Fe-CNP)، 20 میلیگرم/کیلوگرم Fe از FeSO4(گروه FeSO4) و 20 میلیگرم/کیلوگرم Fe از FeSO4 + CNP (گروه FeSO4 + CNP) بودند. نتایج یک افزایش معنیدار در فاکتور بهرهوری تولید، رشد وزنی و FCR در تمامی گروههای مکملسازی شده با Fe (05/0P<) در مقایسه با شاهد نشان دادند. خوراک مصرفی تفاوت معنیداری بین گروهها نداشت (05/0P<). سطح فاکتور آلفا نکروزیس تومور پلاسما (TNF-α) به طور معنیداری توسط Fe-CNP کاهش یافت، اگرچه سطح ایمونوگلوبولین G (IgG) سرم به طور معنیداری در این گروه افزایش یافت (05/0P<). شیوع امتیازات راه رفتن با اختلال (3GS≥) در پرندگان زنده در روز 42 تفاوت معنیداری بین تیمارهای جیرهای نشان نداد (05/0P<). ارزیابی جوجههای لنگ شده نشان داد که شاهد و Fe-CNP کمتر اختلالات راه رفتن کمتری داشتند (05/0P<). مکمل FeSO4به طور معنیداری درصد آسیبهای استخوانهای femur و tibia را افزایش داد (05/0P<). ارزیابی پای جوجههای زنده نشان داد که گروههای Fe-CNP و شاهد وقوع بیشتری از femur طبیعی (NF) و درصد کمتری از نکروز femur انتقالی (FHT) و آسیبهای کلی femur (تمامی F؛ 05/0P<) ارائه دادند. نکروز سر استخوان ران (FHN) و FHS به طور معنیداری توسط تیمارهای جیرهای تحت تأثیر قرار نگرفتند (05/0P<). به طور کلی، مکمل Fe-CNP، توسط بهبود سیستم ایمنی، وقوع آسیبهای BCO در جوجههای گوشتی را کاهش میدهد.
Ahmadi M., Ahmadian A. and Seidavi A.R. (2018). Effect of different levels of nano-selenium on performance, blood parameters, immunity and carcass characteristics of broiler chickens. Poult. Sci. J. 6, 99-118.
Alhenakya A., Abdelqader A., Abuajamiehb M. and Al Fataftah A.R. (2017). The effect of heat stress on intestinal integrity and Salmonella invasion in broiler birds. J. Thermal. Biol. 70, 9-14.
Arredondo M. and Núñez M.T. (2005). Iron and copper metabolism. Mol. Asp. Med. 26, 313-327.
Asheer M., Manwar S.J., Gole M.A., Sirsat S., Wade M.R., Khose K.K. and Sajid Ali S. (2018). Effect of dietary nano zinc oxide supplementation on performance and zinc bioavailability in broilers. Indian J. Poult. Sci. 53, 70-75.
Aviagen. (2014). Ross 308: Broiler Nutrition Specification.. Aviagen Ltd., Newbridge, UK.
Bacon B.R., Tavill A.S., Brittenham G.M., Park C.H. and Recknagel R.O. (1983). Hepatic lipid peroxidation in vivo in rats with chronic iron overload. J. Clin. Invest. 71, 429-439.
Balamurugan R., Mary R.R., Chittaranjan S. and Ramakrishna B.S. (2010). Low levels of faecal lactobacilli in women with iron-deficiency anaemia in south India. British J. Nutr. 104, 931-934.
Banerjee A., Mifsud N.A., Bird R., Forsyth C., Jeff S., Tam C., Kellner S., Grigg A., Motum P., Bentley M., Opat S. and Grigoriadis G. (2015). The oral iron chelator deferasirox inhibits NF-kB mediated gene expression without impacting on proximal activation: Implications for myelodysplasia and aplastic anaemia. British J. Haematol. 168, 576-582.
Bao Y.M., Choct M., Iji P.A. and Bruerton K. (2007). Effect of organically complexed copper, iron, manganese, and zinc on broiler performance, mineral excretion, and accumulation in tissues. J. Appl. Poult. Res. 16, 448-455.
Cheng J., Phong B., Wilson D.C., Hirsch R. and Kane L.P. (2011). Akt fine-tunes NF-kappa B-dependent gene expression during T cell activation. J. Biol. Chem. 286, 36076-36085.
Dinev I. (2009). Clinical and morphological investigations on the prevalence of lameness associated with femoral head necrosis in broilers. British Poult. Sci. 50, 284-290.
Ekiz C., Agaoglu L., Karakas Z., Gurel N. and Yalcin I. (2005). The effect of iron deficiency anemia on the function of the immune system. Hematol. J. 5, 579-583.
Ghazi S., Habibian M., Moeini M.M. and Abdolmohammadi A.R. (2012). Effects of different levels of organic and inorganic chromium on growth performance and immunocompetence of broilers under heat stress. Biol. Trace Elem. Res. 146, 309-317.
Haghighi H.R., Gong J., Gyles C.L., Hayes M.A., Zhou H., Sanei B., Chambers J.R. and Sharif S. (2006). Probiotics stimulate production of natural antibodies in chickens. Clin. Vac. Immun. 13, 975-980.
Houglum K., Filip M., Witztum J.L. and Chojkier M. (1998). Malondialdehyde and 4-hydroxynonenal protein adducts in plasma and liver of rats with iron overload. J. Clin. Invest. 89, 1991-1998.
Jason J., Archibald L.K., Nwanyanwu O.C., Bell M., Buchanan I., Gunter E., Buchanan I., Larned J., Kazembe P.N., Dobbie H. and Jarvis W.R. (2001). The effects of iron deficiency on lymphocyte cytokine production and activation: preservation of hepatic iron but not at all cost. Clin. Exp. Immunol. 126, 466-73.
Kense M.J. and Landman W.J.M. (2011). Enterococcus cecorum infections in broiler breeders and their offspring: molecular epidemiology. Avian Pathol. 40, 603-612.
Kestin S.C., Knowles T.G., Tinch A.E. and Gregory N.G. (1992). Prevalence of leg weakness in broiler chickens and its relationship with genotype. Vet. Rec. 131, 190-194.
Kovalenko L.V. and Folmanis G.E. (2006). Biologicheski Aktivnye Nanoporoshki Zheleza (Biologically Active Iron Nanopowders). Moscow, Nauka.
Kuvibidila S.R. and Porretta C. (2003). Iron deficiency and in vitro iron chelation reduce the expression of cluster of differentiation molecule CD28 but not CD3 receptors on murine thymocytes and spleen cells. British J. Nutr. 90, 179-189.
Lehr C.M., Bouwstra J.A., Schacht E.H. and Junginger H.E. (1992). In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int. J. Pharm. 78, 43-48.
Lillo L., Alarcon J., Cabello G., Cespedes C. and Caro C. (2008). Antibacterial activity of chitooligosaccharides. Z. Naturforsch. 63, 644-648.
McNamee P.T. and Smyth J.A. (2000). Bacterial chondronecrosis with osteomyelitis (femoral head necrosis) of broilers chickens: A review. Avian Pathol. 29, 253-270.
Messa E., Carturan S., Maffe C., Pautasso M., Bracco E., Roetto A., Messa F., Arruga F., Defilippi I., Rosso V., Zanone C., Rotolo A., Greco E., Pellegrino R.M., Alberti D., Saglio G. and Cilloni D. (2010). Deferasirox is a powerful NF-kappa B inhibitor in myelodysplastic cells and in leukemia cell lines acting independently from cell iron deprivation by chelation and reactive oxygen species scavenging. Haematology. 95, 1308-1316.
Millar A.D., Rampton D.S. and Blake D.R. (2000). Effects of iron and iron chelation in vitro on mucosal oxidant activity in ulcerative colitis. Aliment. Pharmacol. Ther. 14, 1163-1168.
Naas I.A., Paz I.C.L.A., Baracho M.S., Menezes A.G., Bueno L.G.F., Almeida I.C.L. and Moura D.J. (2009). Impact of lameness on broiler well-being. J. Appl. Poult. Res. 18, 432-439.
Nielsen S., Nielsen D.S., Lauritzen L., Jakobsen M. and Michaelsen K.F. (2007). Impact of diet on the intestinal microbiota in 10-month old infants. J. Pediatr. Gastroenterol. Nutr. 44, 613-618.
Nollet L., van der Klis J.D., Lensing M. and Spring P. (2007). The Effect of replacing inorganic with organic trace minerals in broiler diets on productive performance and mineral excretion. J. Appl. Poult. Res. 16, 592-597.
Pasparakis M., Alexopoulou L., Episkopou V. and Kollias G. (1996). Immune and inflammatory responses in TNF alpha-deficient mice: A critical requirement for TNF alpha in the formation of primary B-cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. J. Exp. Med. 184, 1397-1411.
Pike K.A., Baig E. and Ratcliffe M.J.H. (2004). The avian B-cell receptor complex: distinct roles of Iga and Igb in B-cell development. Immunol. Rev. 197, 10-25.
Ruan Q., Kameswaran V., Zhang Y., Zheng S., Sun J., Wang J., DeVirgiliis J., Liou H.C., Beg A.A. and Chen Y.H. (2011). The Th17 immune response is controlled by the Rel-RORgamma-RORgamma T transcriptional axis. J. Exp. Med. 208, 2321-2333.
Safuanova G.S.H., Nikulicheva V.I. and Bakirov A.B. (2004). Comprehensive evaluation of the immune system and various cytokines in patients with iron-deficient anemia. Klin. Lab. Diagn. 24, 33-35.
Sandilands V., Brocklehurst S., Sparks N., Baker L., McGovern R., Thorp B. and Pearson D. (2011). Assessing leg health in chickens using a force plate and gait scoring: How many birds is enough? Vet. Rec. 168, 77-83.
SAS Institute. (2004). SAS®/STAT Software, Release 9.1. SAS Institute, Inc., Cary, NC. USA.
Shi B.L., Li D.F. and Piao X.S. (2005). Effects of chitosan on growth performance and immune function in broilers. Chinese J. Anim. Sci. 41, 9-11.
Shirsat S., Kadam A., Mane R.S., Jadhav V.V., Zate M.K., Naushad M. and Kim K.H. (2016). Protective role of biogenic selenium nanoparticles in immunological and oxidative stress generated by enrofloxacin in broiler chicken. Dalton Trans. 45, 8845-8853.
Sirri F., Maiorano G., Tavaniello S., Chen J., Petracci M. and Meluzzi A. (2016). Effect of different levels of dietary zinc, manganese, and copper from organic or inorganic sources on performance, bacterial chondronecrosis, intramuscular collagen characteristics, and occurrence of meat quality defects of broiler chickens. Poult. Sci. 95, 1813-1824.
Smeltzer M. and Gillaspy A. (2000). Molecular pathogenesis of Staphylcoccal osteomyelitis. Poult. Sci. 79, 1042-1049.
Toblli J.E., Cao G., Olivieri L. and Angerosa M. (2008). Comparative study of gastrointestinal tract and liver toxicity of ferrous sulfate, iron amino chelate and iron polymaltose complex in normal rats. Pharmacology. 82, 127-137.
Tompkins G.R., O’Dell L., Bryson I.T. and Pennington C.B. (2001). The effects of dietary ferric iron and iron deprivation on the bacterial composition of the mouse intestine. Curr. Microbiol. 43, 38-42.
Toyokuni S. (2002). Iron and carcinogenesis: From fenton reaction to target genes. Redox Rep. 7, 189-197.
Troeger H., Schneider T., Epple H., Zeitz M. and Schulzke J.D. (2009). Structural and functional changes of the duodenum in human norovirus infection. Gut. 58, 1070-1077.
Werner T., Wagner S.J., Martinez I., Walter J., Chang J.S., Clavel T., Kisling S., Schuemann K. and Haller D. (2011). Depletion of luminal iron alters the gut microbiota and prevents Crohn’s disease-like ileitis. Gut. 60, 325-333.
Wideman R.F. and Prisby R.D. (2013). Bone circulatory disturbances in the development of spontaneous bacterial chondronecrosis with osteomyelitis: A translational model for the pathogenesis of femoral head necrosis. Front. Endocrinol. 3, 183-197.
Wideman R.F., Hamal K.R., Stark J.M., Blankenship J., Lester H., Mitchell K.N., Lorenzoni G. and Pevzner I. (2012). A wire flooring model for inducing lameness in broilers: Evaluation of probiotics as a prophylactic treatment. Poult. Sci. 91, 870-883.
Wideman R.F.Jr., Al-Rubaye A., Kwon Y.M., Blankenship J., Lester H., Mitchell N.K., Pevzner I.Y., Lohrmann T. and Schleifer J. (2015). Prophylactic administration of a combined prebiotic and probiotic, or therapeutic administration of enrofloxacin, to reduce the incidence of bacterial chondronecrosis with osteomyelitis in broilers. Poult. Sci. 94, 25-36.
Wiest R. and Rath H.C. (2003). Gastrointestinal disorders of the critically ill. Bacterial translocation in the gut. Best Pract. Res: Clin. Gastroenterol. 17, 397-425.
Zimmermann M.B., Chassard C., Rohner F., N’Goran E.K., Nindjin C., Dostal A., Utzinger J., Ghattas H., Lacroix C. and Hurrel R.F. (2010). The effects of iron fortification on the gut microbiota in African children: A randomized controlled trial in Cote d’Ivoire. Am. J. Clin. Nutr. 92, 1406-1415.