کاربرد ایزوتوپ پایدار در علم تغذیه حیوانات
Subject Areas : Camelو. جعفری 1 , م. جعفری 2 , ل. روسی 3 , ا. کالیتزا 4 , م.ل. کوستانتینی 5
1 - Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
2 - Tehran Process Secretariat for Low Forest Cover Countries, Research Institute of Forest and Rangeland, Agricultural Research, Education and Extension Organization, Tehran, Iran
3 - Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
4 - Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
5 - Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
Keywords: محیط زیست, تغذیه حیوانات, شبکه غذایی, آنالیز ایزوتوپهای پایدار, جایگاه تغذیهای,
Abstract :
کاربرد نتایج حاصل از آنالیز ایزوتوپهای پایدار (SIA) در تحقیقات کشاورزی، اکولوژی و به طور کلی در برخی رشتهها مانند زیستشناسی، گیاهشناسی، جانورشناسی، شیمی آلی، اقلیم شناسی و تغذیه، به یک رویکرد علمی استاندارد تبدیل شده است. اهداف اصلی این مقاله عبارتند از: (١) ارائه یک تعریف ساده از ایزوتوپهای پایدار و (٢) بیان روشهای اندازهگیری تحلیلی و کاربردهای عمومی ایزوتوپهای پایدار در تغذیه حیوانات. ایزوتوپهای پایدار کربن (13Cδ) و نیتروژن (15Nδ) ابزارهای قدرتمندی برای ارزیابی اولویت تغذیهای موجودات و جایگاه تغذیهای آنها هستند. همچنین ایزوتوپهای پایدار در ارتباط با مدلهای مخلوط بایزین (Bayesian Stable Isotope Mixing Models)، توضیح ارتباطات تغذیهای بین گونهها و سپس شبکههای غذایی پیچیده را ممکن میسازند. دادههای ایزوتوپ پایدار باید با دادههای رژیمهای غذایی مرتبط با رفتارهای تغذیهای تکمیل شوند تا قادر به ارائه اطلاعات دقیق انتقال انرژی یا مواد مغذی باشند. امروزه، آنالیز ایزوتوپهای پایدار جهت پرداختن به رژیمهای غذایی حیوانات و انسان در سراسر جهان مورد استفاده قرار میگیرد.
Abrantes K.G., Barnett A., Marwick T.R. and Bouillon S. (2013). Importance of terrestrial subsidies for estuarine food webs in contrasting East African catchments. Ecosphere. 4, 1-33.
Aitken M.J. (2013). Science-based Dating in Archaeology. Longman, London, United Kingdom.
Barbieri M. (2019). Isotopes in hydrology and hydrogeology. Water. 11(2), 291-297.
Barnet J.S.K., Littler K., Westerhold T., Kroon D., Leng M.J., Bailey I., Röhl U. and Zachos J.C. (2019). A high-fidelity benthic stable isotope record of late cretaceous–early eocene climate change and carbon-cycling. Paleoceanogr. Paleoclimatol. 34, 672-691.
Ben-David M. and Flaherty E.A. (2012). Stable isotopes in mammalian research: A beginner’s guide. J. Mammal. 93, 312-328.
Bentivoglio F., Calizza E., Rossi D., Carlino P., Careddu G., Rossi L. and Costantini M.L. (2016). Site-scale isotopic variations along a river course help localize drainage basin influence on river food webs. Hydrobiologia. 770, 257-272.
Boecklen W.J., Yarnes C.T., Cook B.A. and James A.C. (2011). On the use of stable isotopes in trophic ecology. Annu. Rev. Ecol. Evol. Syst. 42, 411-440.
Boschetti T., Cifuentes J., Iacumin P. and Selmo E. (2019). Local Meteoric water line of Northern Chile (18 °S-30 °S): An application of error-in-variables regression to the oxygen and hydrogen stable isotope ratio of precipitation. Water. 11, 791807.
Bouillon S., Connolly R.M. and Gillikin D.P. (2011). Use of stable isotopes to understand food webs and ecosystem functioning in estuaries. Pp. 143-173 in Treatise on Estuarine and Coastal Science. E Wolanski and D.S. McKusky, Eds.Elsevier, Amsterdam, Netherlands.
Bowen G.J. and Revenaugh J. (2003). Interpolating the isotopic composition of modern meteoric precipitation. Water Resour. Res. 39(10), 1-9.
Brand W.A. (2004). Spectrometer hardware for analyzing stable isotope ratios. Pp. 835-856 in P.A. de Groot, Ed. Handbook of Stable Isotope Analytical Techniques.Elsevier, Amsterdam, Netherlands.
Brand W.A., Coplen T.B., Vogl J., Rosner M. and Prohaska T. (2014). Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical Report). Pure Appl. Chem. 86(3), 425-467.
Brenna J.T., Corso T.N., Tobias H.J. and Caimi R.J. (1997). High-precision continuous-flow isotope ratio mass spectrometry. Mass Spectrom. Rev. 16, 227-258.
Calizza E., Careddu G., Sporta Caputi S., Rossi L. and Costantini M.L. (2018). Time- and depth-wise trophic niche shifts in Antarctic benthos. PLoS One. 13, e0194796.
Calizza E., Costantini M.L., Rossi D., Pasquali V., Careddu G., and Rossi L. (2016). Stable isotopes and digital elevation models to study nutrient inputs in high-arctic lakes. Rend. Lincei. 27, 191-199.
Campbell J.L., Mitchell M.J. and Mayer B. (2006). Isotopic assessment of NO3− and SO42− mobility during winter in two adjacent watersheds in the Adirondack Mountains, New York. J. Geophys. Res. Biogeo. 111, 1-15.
Careddu G., Costantini M.L., Calizza E., Carlino P., Bentivoglio F., Orlandi L. and Rossi L. (2015). Effects of terrestrial input on macrobenthic food webs of coastal sea are detected by stable isotope analysis in Gaeta Gulf. Estuar. Coast. Shelf S. 154, 158-168.
Cassano J.J., Seefeldt M.W., Palo S., Knuth S.L., Bradley A.C., Herrman P.D., Kernebone P.A. and Logan N.J. (2016). Observations of the atmosphere and surface state over Terra Nova Bay, Antarctica, using unmanned aerial systems. Earth Syst. Sci. Data. 8, 115-126.
Chaffee M., Shanks W., Rye R., Shwartz C., Adams M., Carlson R., Crock J., Gemery-Hill P., Gunther K., Kester C., King H. and Podruzny S. (2007). Applications of Trace-Element and Stable-Isotope Geochemistry to Wildlife Issues, Yellowstone National Park and Vicinity. Publications of the US Geological Survey, Nebraska,USA.
Chanton J.P. and Lewis F.G. (1999). Plankton and dissolved inorganic carbon isotopic composition in a river-dominated estuary: Apalachicola bay, Florida. Estuaries. 22, 575-583.
Cicala D., Calizza E., Careddu G., Fiorentino F., Sporta Caputi S., Rossi L. and Costantini M.L. (2019). Spatial variation in the feeding strategies of Mediterranean fish: Flatfish and mullet in the Gulf of Gaeta (Italy). Aquat. Ecol. 53(4), 529-541.
Clewlow H.L., Takahashi A., Watanabe S., Votier S.C., Downie R. and Ratcliffe N. (2019). Niche partitioning of sympatric penguins by leapfrog foraging appears to be resilient to climate change. J. Anim. Ecol. 88, 223-235.
Cooper C.G., Lupo K.D., Zena A.G., Schmitt D.N. and Richards M.P. (2019). Stable isotope ratio analysis (C, N, S) of hair from modern humans in Ethiopia shows clear differences related to subsistence regimes. Archaeol. Anthropol. Sci. 11, 3213-3223.
Currin C.A., Newell S.Y. and Paerl H.W. (1995). The role of standing dead Spartina alterniflora and benthic microalgae in salt marsh food webs: Considerations based on multiple stable isotope analysis. Mar. Ecol. Prog. Ser. 121, 99-116.
Dalerum F. and Angerbjörn A. (2005). Resolving temporal variation in vertebrate diets using naturally occurring stable isotopes. Oecologia. 144, 647-658.
Deniro M.J. and Epstein S. (1981). Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Ac. 45, 341-351.
Di Lascio A., Madeira F., Costantini M.L., Rossi L. and Pons X. (2016). Movement of three aphidophagous ladybird species between alfalfa and maize revealed by carbon and nitrogen stable isotope analysis. Biol. Control. 61, 35-46.
Di Lascio A., Rossi L., Carlino P., Calizza E., Rossi D. and Costantini M.L. (2013). Stable isotope variation in macroinvertebrates indicates anthropogenic disturbance along an urban stretch of the river Tiber (Rome, Italy). Ecolo. Indic. 28, 107-114.
Dotsika E. and Diamantopoulos G. (2019). Influence of climate on stable nitrogen isotopic values of contemporary greek samples: Implications for isotopic studies of human remains from neolithic to late bronze age Greece. Geoscience. 9, 217.
Duffy J.E., McCarroll D., Loader N.J., Young G.H.F., Davies D., Miles D. and Ramsey C.B. (2019). Absence of age-related trends in stable oxygen isotope ratios from oak tree rings. Global Biogeochem. Cycles. 33, 841-848.
Edmond de H. and Stroobant V. (2013). Mass Spectrometry: Principles and Applications. John Wiley and sons, New Jersey, United States.
Eldridge D., Skinner S. and Entwisle T.J. (2003). Survey Guidelines for Non-Vascular Plants. Botanic Gardens Trust, Sydney, Australia.
Emsley J. (2011). Nature’s Building Blocks: An A-Z Guide to the Elements. Oxford University Press, Oxford, United Kingdom.
Finlay J.C. and Kendall C. (2008). Stable isotope tracing of temporal and spatial variability in organic matter sources to freshwater ecosystems Pp. 283-333 in Stable Isotopes in Ecology and Environmental Science. R. Michener and K. Lajtha, Eds. Blackwell Publishing, New Jersey, United States.
Fiorentino F., Cicala D., Careddu G., Calizza E., Jona-Lasinio G., Rossi L. and Costantini M.L. (2017). Epilithon δ15N signatures indicate the origins of nitrogen loading and its seasonal dynamics in a volcanic Lake. Ecol. Indic. 79, 19-27.
Flannery T.F. (2006). The Weather Makers: The History and Future Impact of Climate Change. Atlantic Monthly Press, New York.
Golovkov M.S., Oganessian Y.T., Bogdanov D.D., Fomichev A.S., Rodin A.M., Sidorchuk S.I., Slepnev R.S., Stepantsov S.V., Ter-Akopian G.M., Wolski R., Gorshkov V.A., Chelnokov M.L., Itkis M.G., Kozulin E.M., Bogatchev A.A., Kondratiev N.A., Korzyukov I.V., Yukhimchuk A.A., Perevozchikov V.V., Vinogradov Y.I., Grishechkin S.K., Demin A.M., Zlatoustovskiy S.V., Kuryakin A.V., Fil'Chagin S.V., Il'Kayev R.I., Hanappe F., Materna T., Stuttge L., Ninane A.H., Korsheninnikov A.A., Nikolskii E.Y., Tanihata I., Roussel-Chomaz P., Mittig W., Alamanos N., Lapoux V., Pollacco E.C. and Nalpas L. (2003). Evidences for resonance states in 5H. Phys. Lett. B. 566, 70-75.
Hagen J.H. (1963). The turnover of glycerol in plasma. Life Sci. 3, 170-174.
Hobson K.A. and Sease J.L. (1998). Stable isotope analyses of tooth annuli reveal temporal dietary records: An example using Steller sea lions. Mar. Mamm. Sci. 14, 116-129.
International Atomic Energy Agency. (2004). Isotope Hydrology and Integrated Water Resources Management. Vienna, Austria.
Jafari V. and Jafari M. (2019). Reverse impact of temperature as climate factor on milk production in ChaharMahal and Bakhtiari. World Acad. Sci. Engin. Technol. Int. J. Anim. Vet. Sci. 13, 29-33.
Jafari V. and Torbatinejad N.M. (2015). Nutritive value of range Frankenia hirsuta as fodder resource for ruminant. Am. Adv. J. Biol. Sci. 1, 54-62.
Komorita T., Kajihara R., Tsutsumi H., Shibanuma S., Yamada T., and Montani S. (2014). Food sources for Ruditapes philippinarum in a coastal lagoon determined by mass balance and stable isotope approaches. PLoS One. 9, e86732.
Layman C.A., Araujo M.S., Boucek R., Hammerschlag-Peyer C.M., Harrison E., Jud Z.R., Matich P., Rosenblatt A.E., Vaudo J.J., Yeager L.A., Post D.M. and Bearhop S. (2012). Applying stable isotopes to examine food-web structure: An overview of analytical tools. Biol. Rev. 87, 545-562.
Lee J., Cho J., Cho Y.J., Cho A., Woo J., Lee J., Hong S.G., Sul W.J. and Kin O.S. (2019). The latitudinal gradient in rock-inhabiting bacterial community compositions in Victoria Land, Antarctica. Sci. Total Environ. 657, 731-738.
Lichtfouse E. (2000). Compound-specific isotope analysis. Application to archaeology, biomedical sciences, biosynthesis, environment, extraterrestrial chemistry, food science, forensic science, humic substances, microbiology, organic geochemistry, soil science and sport. Rapid Commun. Mass Spectrom. 14, 1337-1344.
Lynch-Stieglitz J., Stocker T.F., Broecker W.S. and Fairbanks R.G. (1995). The influence of air-sea exchange on the isotopic composition of oceanic carbon: Observations and modeling. Global Biogeochem. Cycles. 9, 653-665.
Madeira F., di Lascio A., Costantini M.L., Rossi L., Rösch V. and Pons X. (2019). Intercrop movement of heteropteran predators between alfalfa and maize examined by stable isotope analysis. J. Pest Sci. 92, 757-767.
Marra J.F. (2019). Hot Carbon: Carbon-14 and a Revolution in Science. Columbia University Press, New York, United States.
Martinetto P., Teichberg M. and Valiela I. (2006). Coupling of estuarine benthic and pelagic food webs to land-derived nitrogen sources in Waquoit Bay, Massachusetts, USA. Mar. Ecol. Prog. Ser. 307, 37-48.
Mayer B., Krouse H.R., Fritz P., Prietzel J. and Rehfuess K.E. (1993). Evaluation of biogeochemical sulfur transformations in forest soils by chemical and isotope data. Pp. 65-72 in Proc. Yokohama Symp., Yokohama, Japan.
McCutchan J.H., Lewis W.M., Kendall C. and McGrath C.C. (2003). Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos. 102, 378-390.
Meier-Augenstein W. (1999). Applied gas chromatography coupled to isotope ratio mass spectrometry. J. Chromatogr. A. 842, 351-371.
Meyer B.S. (2005). Nucleosynthesis and galactic chemical evolution of the isotopes of oxygen. Oxygen Earl. Solar Syst. 1278, 32-38.
Michener R.H. and Kaufman L. (2008). Stable isotope ratios as tracers in marine food webs: An update. Pp. 238-282 in Stable Isotopes in Ecology and Environmental Science. R. Michener and K. Lajtha, Eds. Blackwell Publishing, New Jersey, United States.
Muccio Z. and Jackson G.P. (2009). Isotope ratio mass spectrometry. Analyst. 134, 213-222.
Newsome S.D., Tinker M.T., Monson D.H., Oftedal O.T., Ralls K., Staedler M.M., Fogel,M.L. and Estes J.A. (2009). Using stable isotopes to investigate individual diet specialization in California sea otters (Enhydra lutris nereis). Ecology. 90, 961-974.
Ng J.S.S., Wai T.C. and Williams G.A. (2007). The effects of acidification on the stable isotope signatures of marine algae and molluscs. Mar. Chem. 103, 97-102.
Noorollahi D., Lashkari H., Amirzade M., Azizi G. and Sharafi S. (2011). Climatic and environmental reconstruction based on stable isotopes of Parishan lake (Iran). J. Rangel. Sci. 1, 203-216.
Paritte J.M. and Kelly J.F. (2009). Effect of cleaning regime on stable-isotope ratios of feathers in Japanese quail (Coturnix japonica). Auk. 126, 165-174.
Pate F.D. and Anson T.J. (2007). Stable nitrogen isotope values in arid-land kangaroos correlated with mean annual rainfall: Potential as a palaeoclimatic indicator. Int. J. Osteoarchaeol. 18, 317-326.
Paul D., Skrzypek G. and Fórizs I. (2007). Normalization of measured stable isotopic compositions to isotope reference scales: A review. Rapid Commun. Mass Spectrom. 21, 3006-3014.
Peterson B.J. and Howarth R.W. (1987). Sulfur, carbon, and nitrogen isotopes used to trace organic matter flow in the salt-marsh estuaries of Sapelo island, Georgia1. Limnol. Oceanogr. 32, 1195-1213.
Petzke K.J., Boeing H., Klaus S. and Metges C.C. (2005). Carbon and nitrogen stable isotopic composition of hair protein and amino acids can be used as biomarkers for animal-derived dietary protein intake in humans. J. Nutr. 135, 1515-1520.
Philp R.P. (2015). Application of stable isotopes and radioisotopes in environmental forensics. Pp. 395-455 in Introduction to Environmental Forensics, B.L. Murphy and R.D. Morrison Eds. Elsevier, Amsterdam, Netherlands.
Phillips D.L. (2012). Converting isotope values to diet composition: the use of mixing models. J. Mammal. 93(2), 342-352.
Phillips D.L. and Eldridge P.M. (2006). Estimating the timing of diet shifts using stable isotopes. Oecologia. 147, 195-203.
Popa M.E., Vollmer M.K., Jordan A., Brand W.A., Pathirana S.L. and Rothe M. (2014). Vehicle emissions of greenhouse gases and related tracers from a tunnel study: CO: CO2, N2O: CO2: CH4: CO2: O2: CO2 ratios, and the stable isotopes 13C and 18O in CO2 and CO. Atmos. Chem. Phys. 14, 2105-2123.
Post D.M. (2002). Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology. 83, 703-718.
R Core Team. (2013). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.
Reid R.E.B. and Koch P.L. (2017). Isotopic ecology of coyotes from scat and road kill carcasses: A complementary approach to feeding experiments. PloS One. 12, e0174897.
Rossi L., Calizza E., Careddu G., Rossi D., Orlandi L., Jona-Lasinio G., Aguzzi L. and Costantini M.L. (2018). Space-time monitoring of coastal pollution in the Gulf of Gaeta, Italy, using δ15N values of Ulva lactuca, landscape hydromorphology, and Bayesian Kriging modelling. Mar. Pollut. Bull. 126, 479-487.
Rossi L., Caputi S.S., Calizza E., Careddu G., Oliverio M., Schiaparelli S. and Costantini M.L. (2019). Antarctic food web architecture under varying dynamics of sea ice cover. Sci. Rep. 9, 1-13.
Rossi L., Costantini M.L., Carlino P., di Lascio A. and Rossi D. (2010). Autochthonous and allochthonous plant contributions to coastal benthic detritus deposits: A dual-stable isotope study in a volcanic lake. Aquat. Sci. 72, 227-236.
Rossi L., di Lascio A., Carlino P., Calizza E. and Costantini M.L. (2015). Predator and detritivore niche width helps to explain biocomplexity of experimental detritus-based food webs in four aquatic and terrestrial ecosystems. Ecol. Complex. 23, 14–24.
Saggar S., Bettany J.R. and Stewart J.W.B. (1981). Measurement of microbial sulfur in soil. Soil Biol. Biochem. 13, 493-498.
Schellekens R.C.A., Stellaard F., Woerdenbag H.J., Frijlink H.W. and Kosterink J.G.W. (2011). Applications of stable isotopes in clinical pharmacology. British J. Clin. Pharmacol. 72, 879-897.
Schoeller D.A. (2002). Uses of stable isotopes in the assessment of nutrient status and metabolism. Food Nutr. Bull. 23, 17-20.
Schulting R.J. (1998). Slighting the sea: Stable isotope evidence for the transition to farming in northwestern Europe. Doc. Praehis. 25, 18-23.
Signa G., Calizza E., Costantini M.L., Tramati C., Sporta Caputi S., Mazzola A., Rossi L. and Vizzini S. (2019). Horizontal and vertical food web structure drives trace element trophic transfer in Terra Nova Bay, Antarctica. Environ. Pollut. 246, 772-781.
Stachowicz J.J., Bruno J.F. and Duffy J.E. (2007). Understanding the effects of marine biodiversity on communities and ecosystems. Annu. Rev. Ecol. Evol. Syst. 38, 739-766.
Steinitz, R., and Kurle, C. (2014). Sample Collection Protocol for Stable Isotopes Analysis. International Union for Conservation of Nature – Iguana Specialist Group. Available at: http://www.iucn-isg.org.
Telsnig J.I.D., Jennings S., Mill A.C., Walker N.D., Parnell A.C. and Polunin N.V.C. (2019). Estimating contributions of pelagic and benthic pathways to consumer production in coupled marine food webs. J. Anim. Ecol. 88, 405-415.
Vinagre C., Salgado J., Cabral H.N. and Costa M.J. (2011). Food web structure and habitat connectivity in fish estuarine nurseries-impact of river flow. Estuar. Coast. Shelf Sci. 34, 663-674.
Wang J., Chen G., Kang W., Hu K. and Wang L. (2019). Impoundment intensity determines temporal patterns of hydrological fluctuation, carbon cycling and algal succession in a dammed lake of Southwest China. Water Res. 148, 162-175.
Werner R.A. and Brand W.A. (2001). Referencing strategies and techniques in stable isotope ratio analysis. Rapid Commun. Mass Spectrom. 15, 501-519.
Wilkinson D.J. (2018). Historical and contemporary stable isotope tracer approaches to studying mammalian protein metabolism. Mass Spectrom. Rev. 37, 57-80.
Zeuner F.E. (1958). Dating the Past: An Introduction to Geochronology. Methuen, Massachusetts, United States.
Zheng Z., Xu Y., Wang J., Li Y. and Gu B. (2019). Environmental stress and eutrophication in freshwater wetlands: Evidence from carbon and nitrogen stable isotopes in cattail (Typha domingensis Pers.). Ecol. Proc. 8, 31-37.