Body Weight Prediction of Dromedary Camels Using the Machine Learning Models
Subject Areas : CamelN. Asadzadeh 1 , M. Bitaraf Sani 2 , E. Shams Davodly 3 , J. Zare Harofte 4 , M. Khojestehkey 5 , S. Abbaasi 6 , A. Shafie Naderi 7
1 - Department of Animal Production Mnangement, Animal Science Research Institute of Iran (ASRI), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
2 - Department of Animal Science, Yazd Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Yazd, Iran
3 - Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
4 - Department of Animal Science, Yazd Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Yazd, Iran
5 - Department of Animal Science, Qom Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Qom, Iran
6 - Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
7 - Department of Animal Science, Yazd Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Yazd, Iran
Keywords:
Abstract :
Afolayan R.A., Adeyinka I.A. and Lakpini C.A.M. (2006). The estimation of live weight from body measurements in Yankasa sheep. Czech J. Anim. Sci. 51(8), 343-348.
Aiken L.S. and West S.G. (1991). Multiple Regression: Testing and Interpreting Interactions. SAGE Publication, Inc., London, United Kingdom.
Ali M., Eyduran E., Masood Tariq M., Tirink C., Abbas F., Ahmad Bajwa M., Baloch M.H., Nizamani A.H., Waheed A., Awan M.A., Shah S.H., Ahmad Z. and Jan S. (2015). Comparison of artificial neural network and decision tree algorithms used for predicting live weight at post weaning period from some biometrical characteristics in Harnai sheep. Pakistan J. Zool. 47(6), 1579-1585.
Atta M. and El-Khidir O.A. (2004). Use of heart circumstance withers height and scapuloischial length for prediction of love weight of Nilotic sheep. Small Rumin. Res. 55(1), 233-237.
Bahashwan S., Alrawas A.S., Alfadli S. and Johnson E.S. (2016). Dofari cattle growth curve prediction by different nonlinear model functions. Livest. Res. 27(12), 122-129.
Breiman L. (2001). Random forests. Machine Learn. 45, 5-32.
Burden F. and Winkler D. (2008). Bayesian regularization of neural networks. Methods Mol. Biol. 458, 25-44.
Cannas A. and Boe F. (2003). Prediction of the relationship between body weight and body condition score in sheep. Italian J. Anim. Sci. 2, 527-529.
Celik S. and Yilmaz O. (2017). Comparison of different data mining algorithms for prediction of body weight from several morphological measurements in dogs. J. Anim. Plant Sci. 27, 57-64.
Drucker H., Chris J.C., Kaufman L. and Smola A. (1997). Support vector regression machines. Adv. Neural Inform. Proc. Syst. 9, 155-161.
Du C. and Sun D. (2006). Learning techniques used in computer vision for food quality evaluation: A review. J. Food Eng. 72, 39-55.
Durosaro M.S., Oyetade B.M., Ilori A.S., Adenaike O., Olowfeso M., Wheto S.A. and Amus S.O. (2013). Estimation of body weight of Nigerian local turkeys from zoometrical measurements at 4,8 and 12 weeks of weight. Glob. J. Sci. Front. Res. 13(1), 1-5.
Francis J., Sibanda S., Hermansen J. and Kristrerrsen T.E. (2002). Estimating body weight of cattle using linear body measurements. Zimbabwe Vet. J. 33, 15-21.
Huang G.B., Zhou H., Ding X. and Zhang R. (2011). Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. B. 42(2), 513-529.
Huma Z.E. and Iqbal F. (2019). Predicting the body weight of Balochi sheep using a machine learning approach. Turkish J. Vet. Anim. Sci. 43, 500-506.
Iqbal Z.M., Javed K., Abdollah M., Ahmad N., Ali A., Khalique A., Aslamand N. and Younas U. (2014). Estimation of body weight from different morphometric measurement in Kali lambs. J. Anim. Plant Sci. 24(3), 700-703.
Kadim I.T., Mahgoub O. and Purchas R.W. (2008). A review of the growth and the carcass and meat quality characteristics of the one humped camel. Meat Sci. 80(3), 555-569.
Khojastehkey M., Abbasi M.A., Akbari Sharif A. and Hassani A.M. (2016). Estimating the weight of new born lambs using digital images processing. Anim. Sci. J. (Pajouhesh and Sazandegi). 29(112), 99-104.
Khojastehkey M., Jafari Arvari A., Yeganehparast M., Asadzadeh N. and Khaki M. (2019). Biometric measurement of one-humped camels using machine vision technology. J. Rumin. Res. 7(1), 19-32.
Kohler-Rollefson I., Mundy P. and Mathias E. (2001). A Field Manual of Camel Diseases. Intermediate Technology Group Publishing, London, United Kingdom.
Kuhn M. (2012). The Caret Package. R Foundation for Statistical Computing, Vienna, Austria. Available at: https://cran. r-project. org/package=caret.
Mahmud M.A., Shaba P. and Zubairu U.Y. (2014). Live body weight estimation in small ruminants-A review. Glob. J. Anim. Sci. Res. 2(2), 102-108.
Mehta S.C., Bapna D.L. and Bhure S.K. (2010). Mathematical function of growth in India dromedary genotypes. J. Biopest. 80(2), 148-151.
Norouzian M.A. and Vakili M. (2016). Comparison of artificial neural network and multiple regression to estimate fat tail weight of sheep. Iranian J. Appl. Anim. Sci. 4(6), 895-900.
Refaeilzadeh P., Lei T. and Huan L. (2009). Encyclopedia of Database Systems. Springer, New York.
Saberioon M.M., Císar P., Labbé L., Souˇcek P., Pelissier P. and Kerneis T. (2018). Comparative performance analysis of support vector machine, random forest, logistic regression and k-nearest neighbours in rainbow trout (Oncorhynchus mykiss) classification using image-based features. Sensors. 18, 1027- 1042.
Salau J., Haas J., Junge W., Bauer U., Harms J. and Bieletzki S. (2014). Feasibility of automated body trait determination using the SR4K time-of-flight camera in cow barns. Springer Plus. 3(1), 225-239.
Tsegaye D., Belay B. and Haile A. (2013). Linear body measurement as predictor of body weight in Haraghe Highland goat under farmers environment Ethiopia. Glob. Vet. 11(5), 649-656.
Van der Heide E.M.M., Veerkamp R.F., van Pelt M.L., Kamphuis C., Athanasiadis I. and Ducro B.J. (2019). Comparing regression, naive Bayes, and random forest methods in the prediction of individual survival to second lactation in Holstein cattle. J. Dairy Sci. 102, 9409-9421.
Wangchuk K., Wangdi J. and Mindu M. (2017). Comparison and reliability of techniques to estimate live cattle body weight. J. Appl. Anim. Res. 46(1), 1-4.
White B.J., Amrine D.E. and Larson R.L. (2018). Big data analytics and precision animal agriculture symposium: Data to decisions. J. Anim. Sci. 96, 1531-1539.