تغییر رشد و فیزیولوژی گیاه گل داوودی (Chrysanthemum morifolium ) در اثر بهکارگیری کودهای مختلف
Subject Areas : Journal of Ornamental PlantsZahra Oraghi Ardebili 1 , Payam Sharifi 2
1 - Department of Biology, Garmsar Branch, Islamic Azad University, Garmsar, Iran.
2 - Department of Horticulture, Garmsar Branch, Islamic Azad University, Garmsar, Iran
Keywords: ورمی کمپوست, تغذیه, زینتی, کودهای نانو, اسمولیتهای سازگار,
Abstract :
بهمنظور ارزیابی و مقایسه پاسخ گیاه گل داوودی Chrysanthemum morifolium (یک گیاه زینتی مهم)، به کودهای مختلف معدنی، نانو کلاته و یا بیولوژیک، تحقیق حاضر در قالب طرح کاملا تصادفی انجام شد. دانه رستها با سطوح مختلف ورمی کمپوست (0 و 40 درصد)، نانو کلات روی (0 و 1/0 درصد) و یا سولفات روی (0 و 2/0 درصد) تیمار شدند. تیمارهای نانو روی و سولفات روی به روش اسپری 3 بار بافاصله 2 هفته انجام شد. در مقایسه با شاهد، کودهای بکار گرفتهشده، به مقدار معنیداری نرخ رشد و تجمع زیست توده را افزایش دادند و مقادیر بالاتری از سطح برگی و وزنتر و وزن خشک (به ترتیب 41، 39 و 28 درصد) در نمونههای تیمار شده ثبت شد که در بین تیمارها، تیمار همزمان نانو روی و ورمی کمپوست مؤثرترین تیمار بود. بهکارگیری ترکیبی کودهای بیولوژیک و معدنی منجر به افزایش رنگیزه های فتوسنتزی (حدود 53 درصد) در گیاهان تیمار شده نسبت به شاهد شد. بهجز تیمار تنهای سولفات روی، بقیه تیمارها منجر به افزایش معنیدار میزان پرولین برگ (به طور متوسط 51 درصد) در مقایسه با نمونههای شاهد شد. به طور مشابهی، بهکارگیری همزمان ورمی کمپوست و نانوروی موجب افرایش محتوای پرولین ریشه حدود 82 درصد شد. بیشترین میزان فنول محلول برگ در گروه Nano Zn-V ثبت شد (3/3 برابر بیشتر از شاهد). بااینوجود، تغییرات فراوان در ریشه فقط در اثر ورمی کمپوست رخ داد (تقریبا 49 درصد). درنتیجه، بهکارگیری همزمان خاکی کودهای بیولوژیک مثل ورمی کمپوست به همراه بهکارگیری برگی کودهای نانو میتواند بهعنوان یک روش مناسب ازنظر زیستمحیطی برای تحریک نرخ رشد و متابولیسم گیاه باشد.
Ahmed, H., Khalil, A.H., Abd EI-Rahman, M. and Hamed, N. 2012. Effect of zinc, tryptophan and indole acetic acid on growth, yield and chemical composition of Valencia orange trees. Journal of Applied Sciences Research, 8(2): 901-914
Alharby, H.F., Metwali, E.M., Fuller, M.P. and Aldhebiani, A.Y. 2016. The alteration of mRNA expression of SOD and GPX genes, and proteins in tomato (Lycopersicon esculentum Mill.) under stress of NaCl and/or ZnO nanoparticles. Saudi Journal of Biological Sciences, 23(6): 773-781.
Ansari, A. and Sukhraj, K. 2010. Effect of vermiwash and vermicompost on soil parameters and productivity of okra (Abelmoschus esculentus) in Guyana. African Journal of Agricultural Research, 5(14): 1794-1798.
Arnon, D. 1949. Copper enzymes in isolated chloroplasts, polyphenoxidase in Beta vulgaris. Plant Physiology, 24: 1-15.
Atiyeh, R.M., Arancon, N., Edwards, C.A. and Metzger, J.D. 2000. Influence of earthworm-processed pig manure on the growth and yield of greenhouse tomatoes. Bioresource Technology, 75(3): 175-180.
Atiyeh, R. M., Lee, S., Edwards, C., Arancon, N.Q. and Metzger, J.D. 2002. The influence of humic acids derived from earthworm-processed organic wastes on plant growth. Bioresource Technology, 84: 7-14.
Bachman, G.R. and Metzger, J. 2008. Growth of bedding plants in commercial potting substrate amended with vermicompost. Bioresource Technology, 99: 3155–3161.
Bates, L.S., Walrow, R.P. and Teare, I. D. 1973. 'Rapid determination of free proline for water stress studies. Plant Soil, 39:205-208.
Bhat, M.R. and Limaye, S.R. 2012. Nutrient status and plant growth promoting potential of prepared vermicompost. International Journal of Environmental Sciences, 3(1): 312-321.
Dietz, K.J. and Herth, S. 2011. Plant nanotoxicology. Trends in Plant Science, 16(11): 582-589.
Doan, T.T., Henry-des-Tureaux, T., Rumpel, C., Janeau, J.L. and Jouquet, P. 2015. Impact of compost, vermicompost and biochar on soil fertility, maize yield and soil erosion in Northern Vietnam: A three year mesocosm experiment. Science of the Total Environment, 514: 147-154.
Edwards, C.A. and Burrows, I. 1988. The potential of earthworm composts as plant growth media in Neuhauser, C.A. (Ed.), Earthworms in environmental and waste management. SPB Academic Publishing, The Hague, the Netherlands, pp: 211-220.
Gutiérrez-Miceli, F.A., Santiago-Borraz, J., Molina, J.A.M., Nafate, C.C., Abud-Archila, M., Llaven, M.A.O., Rincon-Rosales, R. and Dendooven, L. 2007. Vermicompost as a soil supplement to improve growth, yield and fruit quality of tomato (Lycopersicum esculentum). Bioresource Technology, 98(15): 2781-2786.
Ladan Moghadam, A.R., Oraghi Ardebili, Z. and Saidi, F. 2012. Vermicompost induced changes in growth and development of Lilium Asiatic hybrid var. ‘Navona’. African Journal of Agricultural Research, 7(17): 2609-2621.
Mousavi, S.M. and Ardebili, Z.O. 2014. Growth and blossoming of Lilium under various organic fertilizers. Iranian Journal of Plant Physiology, 5(1):1235-1242.
Nurhidayati, N., Ali, U. and Murwani, I. 2016. Yield and quality of cabbage (Brassica oleracea L. var. Capitata) under organic growing media using vermicompost and earthworm Pontoscolex corethrurus inoculation. Agriculture and Agricultural Science Procedia, 11: 5-13.
Papathanasiou, F., Papadopoulos, I., Tsakiris, I. and Tamoutsidis, E. 2012. Vermicompost as a soil supplement to improve growth, yield and quality of lettuce (Lactuca sativa L.). Journal of Food, Agriculture and Environment, 10(2): 677-682.
Peralta-Videa, J.R., Hernandez-Viezcas, J.A., Zhao, L., Diaz, B.C., Ge, Y., Priester, J.H., Holden, P.A. and Gardea-Torresdey, J.L. 2014. Cerium dioxide and zinc oxide nanoparticles alter the nutritional value of soil cultivated soybean plants. Plant Physiology and Biochemistry, 80: 128-135.
Rashid, A. and Ryan, J. 2004. Micronutrient constraints to crop production in soils with Mediterranean-type characteristics: A review. Journal of Plant Nutrition, 27: 959-975.
Sahni, S., Sarma, B.K., Singh, D., Singh, H. and Singh, K. 2008. Vermicompost enhances performance of plant growth-promoting rhizobacteria in Cicer arietinum rhizosphere against Sclerotium rolfsii and quality of strawberry (Fragaria x ananassa Duch.). Crop Protection, 27: 369–376.
Sekimoto, H., Hosh, M., Nomura, T. and Yokota, T. 1997. Zinc deficiency affects the levels of endogenous gibberellins in Zea mays L. Plant Cell Physiology, 38(9): 1087-1090.
Shahab, S., Ahmed, N. and Khan, N. 2009. Indole acetic acid production and enhanced plant growth promotion by indigenous PSBs. African Journal of Agricultural Research, 4 (11): 1312-1316.
Singh, R., Gupta, R., Patil, R., Sharma, R., Asrey Kumar, A. and Jangra, K. 2010. Sequential foliar application of vermicompost leachates improves marke table fruit yield and quality of strawberry (Fragaria ananassa Duch.). Scientia Horticulturae, 124: 34–39.
Singh, R., Sharma, R., Kumar, S., Gupta, R. and Patil, R. 2008. Vermicompost substitution influences growth, physiological disorders, fruit yield. Bioresource Technology, 99: 8507–8511.
Srivastava, P.K., Gupta, M., Kumar Upadhyay, R., Sharma, T., Shikha, S., Singh, N., Tewari, S. and Singh, B. 2012. Effects of combined application of vermicompost and mineral fertilizer on the growth of Allium cepa L. and soil fertility. Journal of Plant Nutrition and Soil Science, 175: 101–107.
Taiz, L. and Zeiger, E. 1994. Plant physiology. Second edition. Sinauer Associates, Inc., Publishers. Sunderland, Massachusetts, pp: 104-113.
Wang, D., Shi, Q., Wang, X., Wei, M., Hu, J., Liu, J. and Yang, F. 2010. Influence of cow manure vermicompost on the growth, metabolite contents, and antioxidant activities of Chinese cabbage (Brassica campestris ssp. Chinensis). Biology and Fertility of Soils, 46: 689–696.
Warman, P.R. and AngLopez, M.J. 2010. Vermicompost derived from different feed stocks as a plant growth medium. Bioresource Technology, 101: 4479–4483.
Yang, Z., Chen, J., Dou, R., Gao, X., Mao, C. and Wang, L. 2015. Assessment of the phytotoxicity of metal oxide nanoparticles on two crop plants, maize (Zea mays L.) and rice (Oryza sativa L.). International Journal of Environmental Research and Public Health, 12(12): 15100-15109.