References:
1- Alkorta, I., Hern´andez-Allica, J., Becerril, J. M., Amezaga, I., Albizu, I and Garbisu , C. (2004). Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead and arsenic, Rev. Environ. Sci. Bio/Technol. 3, 71–90.
2- Baig, T. H., Garcia, A. E., Tiemann, K. J and Gardea-Torresdey, J. L. (1999). Adsorption of heavy metals ions by the biomass of Solanum elaeagnifolium (silverleaf night-shade), in: Proceeding of the 1999 Conference on Hazardous Waste Research, pp. 131–142.632
3- Baranowska-Morek, A., and Wierzbicka, M. (2004). Localization of lead in root tip of Dianthus carthusianorum, Acta Biol. Cracoviensia Ser. Bot. 46, 45–56.
4- Brooks, R. R., Anderson, C., Stewart, R. B and Robinson, B. H. (1999). Phytomining: growing a crop of a metal, Biologist 46, 201–205.
5- Dushenkov, S. (2003). Trends in phytoremediation of radionuclides, Plant Soil 249, 167–175.
6- Dushenkov, V., Kumar, P. B. A. N., Motto, H and Raskin I. (1995). Rhizofiltration: the use of plants to remove heavy metals from aqueous streams, Environ. Sci.Technol. 29, 1239–1245.
7- Elliot, H. A and Herzig, L .M. (1999). Oxalate extraction of Pb and Zn from polluted soils: solubility limitations, J. Soil Contam. 8 (1), 105–116.
8- Environmental Protection Agency. (EPA). USA 1998, Methods for Analytes and Properties, OSW Methods Team, United States Environmental Protection Agency.
9- Evangelou, M. W. H., Ebel, M and Schaeffer, A. (2007). Chelate assisted phytoextraction of heavy metals from soils. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere. 68, 989-1003.
10- Franceschi, V. R and Nakata, P. A. (2005). Calcium oxalate in plants: formation and function, Annu. Rev. Plant. Biol. 56, 41–71.
11- Gammons, C. H and Wood. S. A. (2000). The aqueous geochemistry of REE. Part 8: solubility of ytterbium oxalate and the stability of Yb (III)–oxalate complexes in water at 25 ◦C to 80◦C, Chem. Geol. 166, 103–124.
12- Ghosh, M and Singh, S. P. (2005). A review on phytoremediation of heavy metals and utilization of its byproducts, Appl. Ecol. Environ. Res. 3, 1–18.
13- Gramss, G., Voigt, K. D and Bergmann, H. (2004). Plant availability and leaching of (heavy) metals from ammonium-, calcium-, carbohydrate-, and citric acid-treated uranium-mine-dump soil, J. Plant Nutr. Soil Sci. 167, 417–427.
14- Keller, C., Ludwig, C., Davoli, F and Wochele, J. (2005). Thermal treatment of metal enriched biomass produced from heavy metal phytoextraction, Environ.Sci.Technol.39, 3359–3367.
15-Kim, C and Ong, S. K. (1999). Recycling of lead-contaminated EDTA wastewater, J.Hazard. Mater. B69, 273–286.
16- Kos, B and Leˇstan, D. (2003). Phytoextraction of lead, zinc and cadmium soil by selected plants, Plant Soil Environ. 49, 548–553.
17- Luo, C. L., Shen, Z. G., Li, X. D. ( 2005). Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere. 59, 1-11.
18- Luo, C. L., Shen, Z. G., Lou, L. Q., Li, X. D. (2006). EDDS and EDTA-enhanced phytoextraction of metals from artificially contaminated soil and residual effects of chelant compounds. Environmental Pollution .144, 862-871.
19- Luo, C. L., Shen, Z. G., Li, X. D. (2007). Plant uptake and the leaching of metals during the hot EDDS-enhanced phytoextraction process. International Journal of Phytoremediation .9, 181-196.
20- Lytle C. M., Lytle, F.W., Yang Qian, N. J., Hansen, H. D., Sayed, A and Terry, N. (1998). Reduction of Cr(VI) to Cr(III) by wetland plants; potential for in situ metal etoxification, Environ. Sci. Technol. 32, 3087–3093.
21- Macek, T., Mackov´a, M., and K´as, J. (2000). Exploitation of plants for the removal of organics in environmental remediation, Biotechnol. Adv. 18, 23–34.
22- Mazen, A. M. A and El Maghraby, O. (1997). Accumulation of cadmium, lead and strontium, and a role of calcium oxalate in water hyacinth tolerance, Biol.Planta. 40 (3): 411–417.
23- Mazen, A. M. A., Zhang D and Franceschi, V. R. (2003). Calcium oxalate formation in Lemna minor: physiological and ultraestructural aspects of high capacity calcium sequestration, New Phytol. 161, 435–448.
24- Nowack, B., Schulin, R and Robinson, B. H. (2006). A critical assessment of chelantenhancedmetal phytoextraction, Environ. Sci. Technol. 40 (17): 5525–5532.
25- N´u˜nez-L´opez, A. R., Meas, Y., Gama, S. C., Borges, R. O and Olgu´ın, E. J. (2008). Leaching of lead by ammonium salts and EDTA from Salvinia minima biomass produced during aquatic phytoremediation. Journal Hazardous Material, 154: 623-632.
26-Olgu´ın, E. J., Anchez-Galv´an. G. S and Erez-P´erez, T. P. (2005). Surface adsorption, intracellular accumulation, and compartmentalization of Pb (II) in batch-operated lagoons with Salvinia minima as affected by environmental conditions, EDTA and nutrients, J. Ind. Microbiol. Biotechnol. 32: 577–586.
27- Peters, R.W. (1999). Chelant extraction of heavy metals from contaminated soils. Hazard. Mater. 66, 151–210.
28- Polprasert, Ch. (1996). Organic Waste Recycling, second ed., John Wiley & ons, Chichester, UK.
29- Quevauviller, P., Rauret, G and Griepink, B. (1993). Single and sequential extraction in sediments and soils, conclusions of the workshop, Int. J. Environ. Anal.Chem. 51, 231–235.
30- Rathinasabapathi, B., Ma, L. Q and Srivastava, M. (2006). Arsenic hyperaccumulating ferns and their application to phytoremediation of arsenic contaminated sites, in: J.A. Texeira da Silva (Ed.), Floriculture, Ornamental and Plant Biotechnology, Global Science Books, London, pp. 304–311.
31- Reed, S.C.; Crites, R.W.; and Middlebrooks, E.J. (1995). Natural Systems for Waste Management and Treatment, second ed., McGraw-Hill, NY.
32-Robinson, B. H., Mills, T. M., Petit, D., Fung, L. E. Green, S. R and Clothier, B. E. (2000). Natural and induced cadmium-accumulation in poplar and willow: implications for phytoremediation, Plant Soil 227, 301–306.
33- Römkens, P., Bouwman, L., Japenga, J and Draaisma, C. (2002). Potential drawbacks of chelat- enhanced phytoremediation of soils. Environmental Pollution.116, 109-121.
34- Sas-Nowosielska, A., Kucharski, R., Małkowski, E., Pogrzeba, M., Kuperberg, J. Mand Kry´nski, K. (2004). Phytoextraction crop disposal—an unsolved problem, Environ. Pollut. 128, 373–379.
35- Sun, B., Zhao, F.J. Lombi, E and McGrath, S. P. (2001). Leaching of heavy metals from contaminated soils using EDTA, Environ. Pollut. 113, 111–120.
36- Tandy, S., Bossart, K., Mueller, R., Ritschel, J., Hauser, L., Schulin, R., and Nowack, B. (2004). Extraction of heavy metals from soils using biodegradable chelating agents, Environ. Sci. Technol. 38 (3), 937–944.
37- Yang, Y. Y., Jung, J. Y., Song, W.Y., Suh, H. S and Lee, Y. (2000). Identification of rice varieties with high tolerance or sensitivity to lead and characterization of the mechanism of tolerance, Plant Physiol. 124, 1019–1026.
38- Zeng, Q. R., Sauv´e, S., Allen, H. E and Hendershot, W. H. (2005). Recycling EDTA solutions used to remediate metal-polluted soils, Environ. Pollut. 133, 225–231.