Effect of Seed Inoculation with Phosphate Solubilizing Bacteria Yield and Growth faba bean (Vicia faba L.) at the Different Values of Phosphorus Fertilizers
Subject Areas : agronomyPeyman Sharifi 1 , Zeinab MaghbolKerdar 2
1 - Department of Agronomy and Plant Breeding, Rasht Branch, Islamic Azad University, Rasht, Iran
2 - Ph.D. student, Department of Agronomy and Plant Breeding, Rasht Branch, Islamic Azad University, Rasht, Iran.
Keywords: microorganisms, Bio-fertilizer, Phosphate Fertilizer, Pseudomonas fluorescent, Seed phosphorus content,
Abstract :
This research carried out in a field factorial experiment based on randomized complete block design with three replications in Rasht at 2016-17 growing season. Experimental factors were including two levels of Pseudomonas fluorescent (seed inoculationand uninoculation) and six levels of phosphate fertilizer from super phosphate triple source (0, 30, 60, 90, 120 and 150 kg/ha). Pseudomonas effect was significant on pod length, number of seed per pod, number of pod per plant, hundred seed weight, dry seed yield, harvest index and phosphorous seed content (P≤ 0.01). Effect of phosphate fertilizer was significant on number of pod per plant, hundred seed weight, dry seed yield, harvest index and phosphorous seed content (P≤ 0.01). Interaction effects of two factors were significant on all of the studied traits except of harvest index (P≤ 0.01). The highest value of phosphorous seed content (355 ppm) was observed in combination treatment of 150 kg P/ha and Pseudomonas inoculation. Seed yield was 3893.3 kg/ha in combination of seed inoculation with Pseudomonas and phosphate fertilizer (90 kg/ha), which there was no significant differences with 120 and 150 kg P/ha. This fertilizer combination increased 38 percent seed yield in comparison to 90 kg/ha phosphate fertilizer and uninoculation of Pseudomonas bacteria. Overall, the inoculation with Pseudomonas bacteria and phosphate fertilizer (90 kg/ha) could achieve seed yield potential, reduce the adverse environmental impacts and save the P-fertilizer utilization.
ذر شین زنوش، ر.، ان صاری، م. ح. و م صطفوی راد، م. 1394 . اثر پرایمینگ شیمیایی و زیستی بر
.83-73 :(40) نشریه فیزیولوژی محیطی گیاهی، 10 .(Vicia faba L.) عملکرد و اجزای عملکرد باقلا
-2 ر ضایی چیانه، ا.، تاجبخش، م.، قیا سی، م. و امیر نیا، ر. 1394 . بررسی اثر تلفیقی کودهای آلی و
تحت شرایط دیم. پژوهش در گیاهان (Cicer arietinum L.) شیمیاییبر عملکرد کمی و کیفی گیاه نخود
.55-69 :(1) زراعی، 3
-3 ر ضاپور کوی شاهی، ط.، ان صاری، م. ح. و م صطفوی راد، م. 1394 . اثر برخی سویههای باکتری
گیلان در (Phaseolus vulgaris L.) حلکنندة فسفات بر عملکرد و خصوصیات زراعی مهم لوبیای محلی
.801-814 :(3) مقادیر مختلف کود فسفاته. بهزراعی کشاورزی، 17
-4 صابری، ح. ، محسنآبادی، غ. ر.، مجیدیان، م. و احتشامی،س. م. ر. 1394 . کاربرد تلفیقی کودهای
در شرایط آب و هوایی (Phaseolus vulgaris) زیستی و شیمیاییبر عملکرد و اجزای عملکرد لوبیا
.31-21 :(1) شهرستان رشت. نشریه پژوهشهای حبوبات ایران، 6
-5 کاظمی پشتمساری، ح.، پیردشتی، ا. و بهمنیار، م .ع. 1386 . مقایسه اثرات کودهای فسفرِ معدنی و
- مجله علوم کشاورزی و منابع طبیعی، 20:25 .(Vicia faba L.) زیستی بر ویژگیهای زراعی دو رقم باقلا
.39
-6 منصورقناعی پاشاکیک.، محسنآبادی، غ. ر.، مجیدیان، م. و فلاح نصرتآباد، ع. ر. 1395 . تأثیر
Phaseolus ) کاربرد کود های نیتروژن، فسفر به همراه کود زیستی بر عملکرد و اجزای عملکرد لوب یا
.59-47 :(22) در منطقه لاهیجان. نشریه تولید و فرآوری محصولات زراعی و باغی، 6 (vulgaris L.
28
نصرالهزاده اصل، ع. و قرباننژاد، ح. 1393 . اثر کودهای زیستی و معدنی فسفر همراه با محلولپا شی
اکوفیزیولوژی گ یا هان زراعی، .(Phaseolus vulgaris L.) ع ناصر ریزم غذی بر عملکرد لوب یاچیتی
.451-464:(4)8
-8 ی ساری، ا.، مظفری، س.، قا سمی چپی، ا.، جعفر زاده زغال چالی، ح. و شفیعی، ع. 1393 . اثر
تلقیح با باکتریهای حلکنندههای فسفات و سطوح فسفر معدنی بر خصوصیات رشد و عملکرد دانه در ارقام
.703-693 :(4) نشریه پژوهشهای زراعی ایران، 12 .(Glycine max) سویا
9-Ahmed, M. A. and El-Abagy, H. M. H. 2007. Effect of bio-and mineral
phosphorus fertilizer on the growth, productivity and nutritional value of some faba
bean (Vicia faba L.) cultivars in newly cultivated land. Journal of Applied Sciense
and Research, 3 (6): 408-420.
10-Aris, T. W., Rika, I. A. and Giyanto, A. 2011. Screening of Pseudomonas sp.
isolated from rhizosphere of soybean plant as plant growth promoter and bio-control
agent. American Journal of Agricultural and Biological Sciences, 6 (1): 134-141.
11-Bolland, M. D. A., Riethmuller, G. P., Siddique, K. H. M. and Loss, S.P.
2006. Method of phosphoras fertilizer application and row spacing on grain yield
of faba bean (Vicia faba L.). Australian Journal Experimental Agriculture, 41 (2):
224-234.
12-Crowley, D. 2006. Microbial Siderophores in the plant rhizosphere. In Barton
L. L.; Abada J. (Eds.). Iron Nutrition in Plants andRhizospheric Microorganisms,
Springer, Netherlands, pp. 169-198.
13-Egli, D.B. and Bruening, W.P. 2001. Source-sink relationships, seed sucrose
levels and seed growthrates in soybean. Annals of Botany, 88: 235-242.
14-El-Din Mekki, B. 2016. Effect of bio-organic, chemical fertilizers and their
combination on growth, yield and some macro and micronutrients contents of faba
bean (Vicia faba L.). Bioscience Research, 13(1): 8-14.
15-El-Gizawy, N. K. B. and Mehasen, S.A.S. 2009. Response of faba bean to bio,
mineral phosphorus fertilizers and foliar application with zinc. World Applied
Sciences Journal, 6(10): 1359-1365.
16-FAO. 2020. Food and Agriculture Organization of the United Nations.
FAOSTAT. Available online: http://faostat.fao.org.
17-Hashemniya, P., Sharifi, P. and Aminpanah, H. 2015. Effect of Azotobacter
and chemical phosphorus fertilizer on maize. Jordan Journal of Agricultural
Sciences, 11(3): 789–802.
18-Kuroha, T., Tokunaga, H., Kojima, M., Ueda, N., Ishida, T., Nagawa, S.,
Fukuda, H., Sugimoto, K. andSakakibara, H. 2009. Functional analyses of
lonely guy cytokinin-activating enzymes reveal the importance of the direct
activation pathway in Arabidopsis. The Plant and Cell, 21: 3152–3169.
19-Mehana, T. A. and Abdul Wahid, O. A. 2002. Associative effect of phosphate
dissolving fungi, rhizobium and phosphate fertilizer on some soil properties, yield
components and the phosphorus and nitrogen concentration and uptake by (Vicia
faba L.) under field conditions. Pakistan Journal of Biological Sciences, 5(11):
1226-1231.
20-Mekail, M. M., Maatouk M. A., Zanouny, I., Fouaad, M. and Abd El-Aziz,
S. M. 2005. Response of corn and faba bean to bio-fertilization. Minia Journal of
Agriculture, Research and Development, 25(3): 421-436.
21-Moshtagh, S. and Aminpanah, H. 2015. Effects of phosphorus rate and iron
foliar application on green bean (Phaseolus vulgaris L.) growth and yield.
Agricultural Consensus Science, 80(3): 139–146.
22-Rafat, M. and Sharifi, P. 2015. The effect of phosphorus on yield and yield
components of green bean. Journal of Soil and Nature, 8(1):9-13.
23-Ranjbar-Moghaddam, F. and Aminpanah, H. 2015. Green bean (Phaseolus
vulgaris L.) growth and yield as affected by chemical phosphorus fertilizer and
phosphate bio-fertilizer. IDESIA, 33(2): 77-85
24-Rashid, M., Khalil, S., Ayub, N., Alam, S. and Latif, F. 2004. Organic acids
production and phosphate solubilization by phosphate solubilizing microorganisms
(PSM) under in vitro conditions. Pakistan Journal of Biology Science, 7: 187-196.
25-Salehi, B. and Aminpanah, H. 2015. Effects of phosphorus fertilizer rate and
Pseudomonas fluorescens strain on field pea (Pisum sativum subsp. arvense (L.)
Asch.) growth and yield. Acta agriculturae Slovenica, 105(2): 213 - 224
26-Shakori, S. and Sharifi, P. 2016. Effect of Phosphate Biofertilizer and Chemical
Phosphorus on Growth and Yield of Vicia faba L.. Electronic Journal of Biology,
S1: 47-52.
27-Talebipour, N., Aminpanah H. and Rabiee, M. 2015. Effects of Rhizobium
phaseoli strains and molybdenum foliar application on growth and yield in bean
(Phaseolus vulgaris L.). Journal of Soil and Nature, 8(1): 1–8
28-Toker, C. 2004. Estimates of broad-sense heritability for seed yield and yield
criteria in faba bean (Vicia faba L.). Hereditas, 140: 222-225.
29-Turk, M. A. and Tawaha, A. R. M. 2007. Impact of seeding rate, seeding date,
rate and method of phosphorus application in faba bean (Vicia faba L. minor) in the
absence of moisture stress. Biotechnol. Agronomy Society and Environment, 6(3):
171-178.
30-Van Othman, W. M., Lio, T. A., Mannetje, L. and Wassink, G. Y. 2011. Low
level phosphorus supply affecting nodulation, N2 fixation and growth of cowpea
(Vigna unguiculata L. Walp). Plant and Soil, 135: 67-74.
31-Wakelin, S. A., Warren, R. A., Harvey, P. R. and Ryder, M. H. 2004.
Phosphate solubilization by Penicillium spp. closely associated with wheat roots.
Biology and Fertility of Soils, 40: 36-43.
32-Waluyo, S. H. and Lie, T. and Mannetje, L. 2004. Effect of phosphate on
nodule primordia of soybean (Glycine max Merrill) in acid soils in rhizotron
experiments. Indonesian Journal of Agricultural Science, 5: 37-44.
33-Wu, S. C., Caob, Z. H., Lib, Z. G., Cheunga, K. C. and Wong, M. H. 2005.
Effects of bio-fertilizer containing N-fixer, P and K solubilizers and AM fungi on
maize growth: a greenhouse trial. Geoderma, 125: 155-166.
34-Zeidan, M. S. 2007. Effect of organic manure and phosphorus fertilizers on
growth, yield and quality of lentil plants in sandy soil. Research journal of
agriculture and biological sciences, 3(6): 748-752.
_||_