Developing new Methods to Monitor the Fuzzy Logistic Regression Profiles in Phase II (A case study in health-care)
Subject Areas : Statistical Quality ControlMona Gharegozloo 1 , Reza Kamranrad 2
1 - Department of Industrial Engineering, Faculty of engineering, Semnan university, Semnan, Iran
2 - Department of industrial engineering, faculty of engineering, Semnan university, Semnan, Iran
Keywords:
Abstract :
1] M.Kosha, (2011) Development of methods for monitoring extended linear patterns based on generalized linear models, end quote senior industrial engineer, shahed university.
[2] J. Lovergrov, C. Sherlaw-Jahnson, O. Valencia, S. Gallivan, (1999) Monitoring the performance of cardiac surgeons, Journal Research Society, 5, 685-689.
[3]J. Lovergrov, O. Valencia, T. Treasure, C. Sherlaw-Jahnson, S. Gallivan, Monitoring the result of cardiac surgeryby variable life-adjusted display, The Lancet, 350 (1997), 1128-1130.
[4]Woodall, W. H. and Montgomery, D. C. (1999). Research issues and ideas in statistical process control. Journal of Quality Technology, 31: 376-386.
[5] Montgomery, D.C., (2005) Introduction to statistical quality control, 5th edition, John Wiley &Sons [6] Woodall, W.H., Spitzner, D.J., Montgomery, D.C. and Gupta, S. (2004), .Using control charts to monitor process and product quality profiles. Journal of Quality Technology, 36: 309- 320.
[7] Woodall, W.H.,."Current Research on Profile Monitoring"., Revista Producão,vol.12, no.17,pp.420- 425, 2007
[8] C. B. Cheng, Fuzzy process control: Construction of control charts with fuzzy numbers, Fuzzy Sets and Systems,154(2) (2005), 287-303.
[9] M., Noorossana, R.Amiri (2008), improving monitoring of linear profiles in phase‖ . amir kabir research scientific journal 19-27.
[10] McNeese, William (July 2006). "Over-controlling a Process: The Funnel Experiment". BPI Consulting, LLC. Retrieved 2010-03-17.
[11] Shang Y., Tsung F. and Zou C. (2011). Phase-II profile monitoring with binary data and random predictors. Journal of Quality Technology, 43:196-208.
[12] Paynabar K., Jin J. and Yeh A.B. (2012). Phase I risk-adjusted control charts for monitoring surgical performance by considering categorical covariates. Journal of Quality Technology, 44: 39-53.
[13] Amiri, A., Eyvazian, M., Zou, C., and Noorossana, R. (2012). A parameters reduction method for monitoring multiple linear regression profiles. The International Journal of Advanced Manufacturing Technology, 58: 621-629.
[14] Saghaei A., Rezazadeh-Saghaei M., Noorossana R. and Dorri M. (2012). Phase II logistic profile monitoring. International Journal of Industrial Engineering & Production Research, 23: 291-299.
[15] Soleymanian, M. E., M. Khedmati, and H. Mahlooji. "Phase II monitoring of binary response profiles." Scientia Iranica. Transaction E, Industrial Engineering 20.6 (2013): 2238.
[16] Koosha M. and Amiri A. (2013). Generalized linear mixed model for monitoring autocorrelated logistic regression profiles. International Journal of Advanced Manufacturing Technology, 64:487–495.
[17] Yeh A.B., Huwang L. and Li Y.M. (2009). Profile monitoring for a binary response. IIE Transactions, 41: 931-941.
[18]A.Amiri, M.Emani (2014) development of a method for improving monitoring of logistics profiles in phase ‖. journal of engineering and quality management 110-103.
[19] G. Moghadam, G. A. Raissi Ardali, V. Amirzadeh Devloping New Methods to Monitor Phase II Fuzzy Linear Profiles, Iranian Journal of Fuzzy Systems Vol. 12, No. 4, (2015) pp. 59-77
[20]R.Kamran rad.(2017), monitoring of multiple classifiers based on agreed tables, dissertation PhD in Industrial Engineering,shahed university.
[21] A. Rezaeifar, B. Sadeghpour Gildeh and G. R. Mohtashami Borzadaran Risk-adjusted control charts based on LR-fuzzy data Iranian Journal of Fuzzy Systems Volume 17, Number 5, (202e0), pp. 69-80
[22] R.M. Dom, R. Zain, S. Abdul Kareem, B. Abidin, An adaptive fuzzy regression model for the prediction of dichotomous response variables, in: 15th Conference on Computational Science and Applications, Malaysia, 2007, pp. 14–19.
[23] H.J. Zimmerman, Fuzzy Set Theory and its Applications, Kluwer Academic, Boston, 1991.
[24] R. Viertl, Statistical Methods for Fuzzy Data, John Wiley and Sons, Austria, 2011.
[25] R. Korner and W. Nather, Linear regression with random fuzzy variables: extended classical estimates, best linear estimates, least squares estimates, J. Information Sciences, 109 (1998), 95-118.
[26] J.J. Buckley, T. Feuring, Linear and non-linear fuzzy regression: evolutionary algorithm solutions, Fuzzy Sets and Systems 112 (2000) 381–394.
[27] J.J. Buckley, T. Feuring, Y. Hayashi, Multivariate non-linear fuzzy regression: an evolutionary algorithm approach, International Journal of Uncertainty,Fuzziness and Knowledge-Based Systems 7 (1999) 83–98.
[28] A. Celmins, A practical approach to nonlinear fuzzy regression, SIAM Journal on Scientific and Statistical Computing 12 (1991) 521–546.
[29] H. Tanaka, S. Uejima, K. Asai, Linear regression analysis with fuzzy model, IEEE Transactions on Systems, Man and Cybernetics 12 (1982) 903–907.
[30] P. Diamond, Least squares fitting of several fuzzy variables, in: Proc. of the Second IFSA Congress, Tokyo, 1987, pp. 20–25.
[31] S. Pourahmad, S.M.T. Ayatollahi, S.M. Taheri, Fuzzy logistic regression, a new posssibilistic regression and its application in clinical vague status, Iranian Journal of Fuzzy Systems 8 (2011) 1–17.
[32] H.C. Wu, Linear regression analysis for fuzzy input and output data using the extension principle, Computers & Mathematics with Applications 45(2003) 1849–1859.
[33] A. Celmins, Least squares model fitting to fuzzy vector data, Fuzzy Sets and Systems 22 (1987) 260–269. [34] P. Diamond, H. Tanaka, Fuzzy regression analysis, in: R. Slowinski (Ed.), Fuzzy Sets in Decision Analysis, Operations Research and Statistics, Kluwer,Academic Publishers, USA, MA, 1998, pp. 349–387.
[35] P. Diamond, R. Korner, Extended fuzzy linear models and least squares estimates, Computers and Mathematics with Applications 33 (1997) 15–32.
[36] R. Xu, C. Li, Multidimensional least-squares fitting with fuzzy model, Fuzzy Sets and Systems 119 (2001) 215–223.
[37] Chi-Bin Cheng, Fuzzy process control: construction of control charts with fuzzy numbers, Fuzzy sets and systems, 154 (2005) 287-303.
[38] B. S. Gildeh, D. Gien, La distance-Dp, q et le coe_cient de correlation entre deux variables aleatoires oues, Encontres Francophones Sur la Logique Floue et Ses Applications LFA0 1, 2001.
[39] R. Korner and W. Nather, Linear regression with random fuzzy variables: extended classicalestimates, best linear estimates, least squares estimates, J. Information Sciences, 109 (1998),95-118.
[40] R. Viertl, Statistical Methods for Fuzzy Data, John Wiley and Sons, Austria, 2011.