Synthesis of Chitosan-Folic acid/ Magnetite Nanocomposite from Shrimp Shells and its Antibacterial Activities on Escherichia coli and Staphylococcus aureus
Subject Areas :Juliet Ordoukhanian 1 , Shahla Mozaffari 2 , Narges Ajami 3 , Shima Nahal 4
1 - Department of Chemistry, Faculty of Science, University of Payame Noor, Tehran, Iran
2 - Department of Chemistry, Faculty of Science, University of Payame Noor, Tehran, Iran
3 - Department of Chemistry, Faculty of Science, University of Payame Noor, Tehran, Iran
4 - Department of Chemistry, Faculty of Science, University of Payame Noor, Tehran, Iran
Keywords: nanocomposite, Chitosan, Magnetite, Antibacterial activity, Shrimp shells,
Abstract :
In this study, by preparing chitosan from shrimp shell which is low- cost and available, the degradable and biocompatible nanocomposite from folic acid functionalized chitosan was obtained by the addition of magnetite nanoparticles. First, by adding folic acid in an acidic medium to the prepared chitosan, the chitosan-folic acid derivative was obtained via ultrasonic dispersion. Then, by adding it to the solution of magnetite nanoparticles prepared by co-precipitation method from Fe (II) and Fe (III) salts by addition of ammonia solution, chitosan- folic acid/ magnetite nanocomposite was prepared which has special antibacterial properties on some pathogenic microorganisms. The properties of the prepared nanocomposite were investigated by Fourier transform Infrared (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD) analysis. The results of antibacterial tests showed that both the derivatives prepared from chitosan at the concentration of 200 μg/ml could inhibit the growth of gram-negative Escherichia coli and gram-positive Staphylococcus aureus
[1] Divya, K.; Jisha, M.S.; Environ, Chem. Lett. 16, 101-112, 2018.
[2] Pirsa, S.; Mohtarami, F.; Kalantari, S.; Chem. Rev. Lett. 3, 98-106, 2020.
[3] Pirsa, S.; Int. J. Biol. Macromol. 163, 666-675, 2020.
[4] Pirsa, S.; Farshchi, E.; Roufegarinejad, L.; J. Polym. Environ. 28, 3154-3163, 2020.
[5] Giannakas, A.; Pissanou, M.; S.F.J. Nanochem. Nanotechnol. 1, 1-17, 2018.
[6] Mohammadi, B.; Pirsa, S.; Alizadeh. M.; Polym. Polym. Compos. 27, 507-517, 2019.
[7] George, A.; Shah, P.A.; Shrivastav, P.S.; Int. J. Pharm. 561, 244-264, 2019.
[8] Rezaei, M.; Pirsa. S.; Chavoshizadeh. S.; J. Int. Organomet. Polym. Mater. 30, 2654-2665, (2020).
[9] Asdagh. A.; Karimi Sani. I.; Pirsa. S.; Amiri. S.; Shariatifar. N.; Eghbaljoo. H.; Shabahang. Z.; Taniyan. A.; J. Polym. Environ. 29, 335-349, 2021.
[10] Xu, C.; Akakuru, O.U.; Zheng, J.; Wu, A.; Front. Bioeng. Biotechnol. 7, 141, 2019.
[11] Mashjoor, S.; Yousefzadi, M.; Iran. J. Med. Microbiol. 12, 208-217, 2018.
[12] Allafchian. A.; Hosseini, S.S.; IET Nanobiotechnol. 13, 786-789, 2019.
[13] Jahanbakh. A.; Pirsa, S.; Bahram. M.; Main Group Chem. 16, 85-94, 2017.
[14] Pirsa. S. Asadzadeh. F.; Karimi Sani. I.; J. Inorg. Organomet. Polym. Mater. 30, 3188-3198, 2020.
[15] Chen, S.; Wu, G.; Zeng, H.; Carbohydr. Polym. 60, 33-38, 2005.
[16] Wardani. G.; Mahmiah. M.; Sudjarwo, S.A.; Pharmacogn. J. 10, 162-166, 2017.
[17] Pirsa, S.; Karimi Sani, I.; Pirouzifard, M.K.; Erfani. A.; Food Addit. Contam. A, 37, 634-648, 2020.
[19] Sathiya, S.M.; Okram, G.S.; Maria Dhivya, S., Manivannan, G.; Jothi Rajan, M.A.M.; Mater. Today-Proc. 3, 3855-3860, 2016.
[20] Zander, J.; Besier, S.; Ackermann. H.; Wichelhaus, T.A.; Antimic. Agents Chemother. 54, 1226-1231, 2010.
[21] Chinnaiyan, S.K.; Ramar, T.; Soloman, A.M.; Perumal, R.K.; Gopinath, A.; Balaraman, M.; Carbohyd. Polym. 231, 115682, 2020.
[22].Chanphai, P.; Konka,V.; Tajmir-Riahi, H.A.; J. Mol. Liq. 238, 155-159, 2017.
[23] Nejadshafiee, V.; Naeimi, H.; Goliaei, B.; Bigdeli, B.; Sadighi, A.; Dehghani, S.; Lotfabadi, A.; Hossein, M.; Nezamtaheri, M.S.; Amanlou, M.; Sharifzadeh, M.; Khoobi, M.; Mater. Sci. Eng. C. 99, 805-835, 2020.
[24] Bandara, S.; Carnegie, C.; Johnson. C.; Akindoju, F.; Williams, E.; Swaby, J.M.; Oki, A.; Carson, L.E.; Heliyon 4(8), PMC6113674, 2018.
[25] Dramou, P.; Fizir, M.; Taleb, A.; Itatahine, A.; Dahiru, N.S.; Ait Mehdi, Y.; Wei, L.; Zhang, J.; He, H.; Carbohydr. Polym. 197, 117-127, 2018.
[26] Jiang, M.; Wang, K.; Kennedy, J.F.; Nie, J.; Yu, J.; Ma, G.; Int. J. Biol. Macromol. 47, 696-699, 2010.
[28] He, Y.; Wang, X.; Jin, P.; Zhao, B.; Fan, X.; Spectrochim. Acta. A-M. 72, 876-879, 2009.
[29] Cruz, R.S.; Fook, B.R.; Lima, V.A.; Rached, R.I.; Lima, E.P.; Lima, R.J.; Covas, C.A.; Fook, M.V.; Mar. Drugs 15, 141, 2017.
[31] Taheri, A.; Seyfan, A.; Jalalinezhad, S.; J. Fasa Univ. Med. Sci. 3, 49-55, 2013.
_||_
[1] Divya, K.; Jisha, M.S.; Environ, Chem. Lett. 16, 101-112, 2018.
[2] Pirsa, S.; Mohtarami, F.; Kalantari, S.; Chem. Rev. Lett. 3, 98-106, 2020.
[3] Pirsa, S.; Int. J. Biol. Macromol. 163, 666-675, 2020.
[4] Pirsa, S.; Farshchi, E.; Roufegarinejad, L.; J. Polym. Environ. 28, 3154-3163, 2020.
[5] Giannakas, A.; Pissanou, M.; S.F.J. Nanochem. Nanotechnol. 1, 1-17, 2018.
[6] Mohammadi, B.; Pirsa, S.; Alizadeh. M.; Polym. Polym. Compos. 27, 507-517, 2019.
[7] George, A.; Shah, P.A.; Shrivastav, P.S.; Int. J. Pharm. 561, 244-264, 2019.
[8] Rezaei, M.; Pirsa. S.; Chavoshizadeh. S.; J. Int. Organomet. Polym. Mater. 30, 2654-2665, (2020).
[9] Asdagh. A.; Karimi Sani. I.; Pirsa. S.; Amiri. S.; Shariatifar. N.; Eghbaljoo. H.; Shabahang. Z.; Taniyan. A.; J. Polym. Environ. 29, 335-349, 2021.
[10] Xu, C.; Akakuru, O.U.; Zheng, J.; Wu, A.; Front. Bioeng. Biotechnol. 7, 141, 2019.
[11] Mashjoor, S.; Yousefzadi, M.; Iran. J. Med. Microbiol. 12, 208-217, 2018.
[12] Allafchian. A.; Hosseini, S.S.; IET Nanobiotechnol. 13, 786-789, 2019.
[13] Jahanbakh. A.; Pirsa, S.; Bahram. M.; Main Group Chem. 16, 85-94, 2017.
[14] Pirsa. S. Asadzadeh. F.; Karimi Sani. I.; J. Inorg. Organomet. Polym. Mater. 30, 3188-3198, 2020.
[15] Chen, S.; Wu, G.; Zeng, H.; Carbohydr. Polym. 60, 33-38, 2005.
[16] Wardani. G.; Mahmiah. M.; Sudjarwo, S.A.; Pharmacogn. J. 10, 162-166, 2017.
[17] Pirsa, S.; Karimi Sani, I.; Pirouzifard, M.K.; Erfani. A.; Food Addit. Contam. A, 37, 634-648, 2020.
[19] Sathiya, S.M.; Okram, G.S.; Maria Dhivya, S., Manivannan, G.; Jothi Rajan, M.A.M.; Mater. Today-Proc. 3, 3855-3860, 2016.
[20] Zander, J.; Besier, S.; Ackermann. H.; Wichelhaus, T.A.; Antimic. Agents Chemother. 54, 1226-1231, 2010.
[21] Chinnaiyan, S.K.; Ramar, T.; Soloman, A.M.; Perumal, R.K.; Gopinath, A.; Balaraman, M.; Carbohyd. Polym. 231, 115682, 2020.
[22].Chanphai, P.; Konka,V.; Tajmir-Riahi, H.A.; J. Mol. Liq. 238, 155-159, 2017.
[23] Nejadshafiee, V.; Naeimi, H.; Goliaei, B.; Bigdeli, B.; Sadighi, A.; Dehghani, S.; Lotfabadi, A.; Hossein, M.; Nezamtaheri, M.S.; Amanlou, M.; Sharifzadeh, M.; Khoobi, M.; Mater. Sci. Eng. C. 99, 805-835, 2020.
[24] Bandara, S.; Carnegie, C.; Johnson. C.; Akindoju, F.; Williams, E.; Swaby, J.M.; Oki, A.; Carson, L.E.; Heliyon 4(8), PMC6113674, 2018.
[25] Dramou, P.; Fizir, M.; Taleb, A.; Itatahine, A.; Dahiru, N.S.; Ait Mehdi, Y.; Wei, L.; Zhang, J.; He, H.; Carbohydr. Polym. 197, 117-127, 2018.
[26] Jiang, M.; Wang, K.; Kennedy, J.F.; Nie, J.; Yu, J.; Ma, G.; Int. J. Biol. Macromol. 47, 696-699, 2010.
[28] He, Y.; Wang, X.; Jin, P.; Zhao, B.; Fan, X.; Spectrochim. Acta. A-M. 72, 876-879, 2009.
[29] Cruz, R.S.; Fook, B.R.; Lima, V.A.; Rached, R.I.; Lima, E.P.; Lima, R.J.; Covas, C.A.; Fook, M.V.; Mar. Drugs 15, 141, 2017.
[31] Taheri, A.; Seyfan, A.; Jalalinezhad, S.; J. Fasa Univ. Med. Sci. 3, 49-55, 2013.