Investigation on correlation between the content of palmitic acid methyl ester obtained by transesterification of natural rubber’s extracted lipids and cure characteristics of rubber compounds using gas chromatography – mass spectroscopy
Subject Areas :Fereshteh Eildari 1 , Mercedeh Malekzadeh 2 , Mandana Saber Tehrani 3 , Fereshteh Motiee 4
1 - Ph.D Student of Applied Chemistry, Chemistry Faculty, North Tehran Branch, Islamic Azad University, Tehran, Iran.
2 - Assistant Prof. of Applied Chemistry, Chemistry Faculty, North Tehran Branch, Islamic Azad University, Tehran, Iran.
3 - Assistant Prof. of Applied Chemistry, Chemistry Faculty, North Tehran Branch, Islamic Azad University, Tehran, Iran.
4 - Assistant Prof. of Applied Chemistry, Chemistry Faculty, North Tehran Branch, Islamic Azad University, Tehran, Iran.
Keywords: Rubber compound, Natural rubber, Cure properties, Palmitic acid methyl ester, Gas chromatography-mass spectroscopy,
Abstract :
In this research work, the correlations between the curing properties of natural rubber based compounds were investigated with the content of palmitic acid methyl ester obtained by transesterification of natural rubber’s extracted lipids. For this purpose, at the first step the lipids in natural rubber were extracted and methyl esters derivatives were prepared. At the second step the obtained palmitic acid methyl esters from different natural rubbers were identified and quantified by gas chromatography-mass spectrometry. Finally the correlations between the amount of palmitic acid methyl ester and curing properties of rubber compounds were investigated and linear models were obtained. These models were used for prediction of cure properties in a case study. The results showed that scorch time, optimum cure time and cure rate index can be predicted by less than 6% error and torque difference can be estimated by lower than 13% error. This new approach can be used to predict the cure properties of the compound before compounding.
[1] Rolere, S.; Bottier, C.; Vaysse, L.; Sainte-Beuve, J.; Bonfils, F.; Express Polym. Lett. 10(5), 408–419, 2016.
[2] Sriring, M.; Nimpaiboon, A.; Kumarn, S.; Sirisinha, C.; Sakdapipanich, J.; Toki, S.; Polym. Test. 70, 127-134, 2018.
[3] Liengprayoon, S.; Bonfils, F.; Sainte-Beuve, J.; Sriroth, K.; Dubreucq, E.; Vaysee, L.; Eur. J. Lipid Sci. Technol. 110, 563-569, 2008.
[4] Hasma, H.; Subramaniam, S.; J. Nat. Rub. Res. 1, 30–40, 1986.
[5] Rolere, S.; Liengprayoon, S.; Vaysse, L.; Sainte-Beuve, J.; Bonfils, F.; Polym. Test. 43, 83- 93, 2015.
[6] Woo Bae, S.; Jung, S.; Chul Choi, S.; Young Kim, M.; Beungtae Ryu, S.; Molecules. 25, 5110-5123, 2020.
[7] Bottier, C.; Adv. Bot. Res. 93, 201-203, 2020.
[8] Lienprayoon, S.; Chaiyut, J.; Sriroth, K.; Bonfils, F.; Sainte-Beuve, J.; Debreucq, E.; Vaysee, L.; Eur. J. Lipid Sci. Technol. 115, 1021-1031, 2013.
[9] Kawahara, S.; Kakubo, T.; Polymer 41, 7483-7488, 2000.
[10] Liengprayoon, S.; Ph.D. Thesis, University of Montpellier SupAgro, Montpellier, France, 2008.
[11] Junkong, P.; Morimoto, R.; Miyaji, K.; Tohsan, A.; Sakakia, Y.; Ikeda, Y.; RSC Adv. 10, 4772-4785, 2020.
[12] Tuampoemsab, S.; Sakdapipanich, J.; Pruffen und Messen Testing and Measuring, KGK, 10, 674-684, 2007.
[13] Salomez, M.; Subileau, M.; Intapun, J.; Bonfils, F.; Sainte-Beuve, J.; Vaysse, L.; Dubreucq, E.; J. Appl. Microbiol. 117, 921-929, 2014.
[14] Arnold, A.R.; Evans, P.; J. Nat. Rub. Res. 6(2), 75-78, 1991.
[15] Payungwong, N.; Tuampoemsab, S.; Rojruthai, P.; Sakdapipanich, J.; J. Rub. Res., 24, 543-553, 2021.
[16] Loften, J.R.; Linn, J.G.; Drackley, J.K.; Jenkins, T.C.; Soderholm, C.G.; Kertz, A.F.; J. Dairy Sci. 97, 4661-4674, 2014.
[17] Folch, J.; Lees, M.; Sloane Stanley, G.H.; J. Biol. Chem. 226, 497-509, 1957.
[18] Musigamart, N.; Ph.D. Thesis, University of Kasetsart, Bangkok, Thailand, 2015.
[19] Motiee, F.; Taghvaei-Ganjali, S.; Malekzadeh, M.; Int. J. Ind. Chem. 4, 1-8, 2013.
_||_
[1] Rolere, S.; Bottier, C.; Vaysse, L.; Sainte-Beuve, J.; Bonfils, F.; Express Polym. Lett. 10(5), 408–419, 2016.
[2] Sriring, M.; Nimpaiboon, A.; Kumarn, S.; Sirisinha, C.; Sakdapipanich, J.; Toki, S.; Polym. Test. 70, 127-134, 2018.
[3] Liengprayoon, S.; Bonfils, F.; Sainte-Beuve, J.; Sriroth, K.; Dubreucq, E.; Vaysee, L.; Eur. J. Lipid Sci. Technol. 110, 563-569, 2008.
[4] Hasma, H.; Subramaniam, S.; J. Nat. Rub. Res. 1, 30–40, 1986.
[5] Rolere, S.; Liengprayoon, S.; Vaysse, L.; Sainte-Beuve, J.; Bonfils, F.; Polym. Test. 43, 83- 93, 2015.
[6] Woo Bae, S.; Jung, S.; Chul Choi, S.; Young Kim, M.; Beungtae Ryu, S.; Molecules. 25, 5110-5123, 2020.
[7] Bottier, C.; Adv. Bot. Res. 93, 201-203, 2020.
[8] Lienprayoon, S.; Chaiyut, J.; Sriroth, K.; Bonfils, F.; Sainte-Beuve, J.; Debreucq, E.; Vaysee, L.; Eur. J. Lipid Sci. Technol. 115, 1021-1031, 2013.
[9] Kawahara, S.; Kakubo, T.; Polymer 41, 7483-7488, 2000.
[10] Liengprayoon, S.; Ph.D. Thesis, University of Montpellier SupAgro, Montpellier, France, 2008.
[11] Junkong, P.; Morimoto, R.; Miyaji, K.; Tohsan, A.; Sakakia, Y.; Ikeda, Y.; RSC Adv. 10, 4772-4785, 2020.
[12] Tuampoemsab, S.; Sakdapipanich, J.; Pruffen und Messen Testing and Measuring, KGK, 10, 674-684, 2007.
[13] Salomez, M.; Subileau, M.; Intapun, J.; Bonfils, F.; Sainte-Beuve, J.; Vaysse, L.; Dubreucq, E.; J. Appl. Microbiol. 117, 921-929, 2014.
[14] Arnold, A.R.; Evans, P.; J. Nat. Rub. Res. 6(2), 75-78, 1991.
[15] Payungwong, N.; Tuampoemsab, S.; Rojruthai, P.; Sakdapipanich, J.; J. Rub. Res., 24, 543-553, 2021.
[16] Loften, J.R.; Linn, J.G.; Drackley, J.K.; Jenkins, T.C.; Soderholm, C.G.; Kertz, A.F.; J. Dairy Sci. 97, 4661-4674, 2014.
[17] Folch, J.; Lees, M.; Sloane Stanley, G.H.; J. Biol. Chem. 226, 497-509, 1957.
[18] Musigamart, N.; Ph.D. Thesis, University of Kasetsart, Bangkok, Thailand, 2015.
[19] Motiee, F.; Taghvaei-Ganjali, S.; Malekzadeh, M.; Int. J. Ind. Chem. 4, 1-8, 2013.