Electrochemical reduction of graphene oxide by cyclic voltammetry and constant potential methods on copper substrate
Subject Areas :majid mirzayee 1 , chanigiz dehghanian 2
1 - دکتری تخصصی دانشکده مهندسی مواد و متالورژی، پردیس دانشکده فنی، دانشگاه تهران، تهران، ایران.
2 - . استاد گروه خوردگی و حفاظت از مواد، دانشکده مهندسی مواد و متالورژی، پردیس دانشکده فنی، دانشگاه تهران، تهران، ایران
Keywords: Cyclic voltammetry, Graphene oxide, Constant potential, Electrochemical Methods,
Abstract :
In this paper, graphene oxide (GO) was reduced using inexpensive and environmentally friendly methods on the copper substrate. These methods included constant potential and cyclic voltammetry. In the cyclic voltammetry method, GO was deposited on the copper substrate and reduced. In the constant potential method, GO was firstly deposited by a drop cast and then reduced by constant potential method. Electrochemically reduced graphene oxide (ERGO) was characterized by using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. In this study, the results showed that the constant potential method was the best method for the electrochemical reducing of GO. In this way, most functional groups had been reduced. In addition, a high density of the defects and wrinkling of the sheets was observed. The Electrochemical impedance spectroscopy (EIS) test also proved that most of the conductivity belonged to the GO reduced by the constant potential method. Consequently, the method can replace chemical methods for the reducing of GO and eliminate the major weakness of chemical methods that use toxic substances.
[1] Davies, A.; Yu, A.; CAN.; J. Chem. Eng. 89, 1342-1357, 2011.
[2] Bhat, U.; Meti, S.; Mater.Res. Fou. 64, 181-189, 2020.
[3] Horn, M.; Gupta, B.; MacLeod, J.M.; Liu, J.; Motta, N.; Curr. Opin. Green Sustain. Chem. 17, 42-48, 2019.
[4] Yang, Z.; Tian, J.; Yin, Z.; Cui, C.; Qian, W.; Wei, F.; Carbon 141, 467-480, 2019.
[5] Hilder, M.; Winther-Jensen, B.; Li, D.; Forsyth, M.; MacFarlane, D.R.; Phys.Chem. Chem. Phys. 13, 9187-9193, 2011.
[6] Guo, .H.L.; Wang, X.F.; Qian, Q.Y.; Wang, F.B.; Xia, X.H.; ACS Nano 3, 2653-2659, 2009.
[7] Chen, L.; Tang, Y.; Wang, K.; Liu, C.; Luo, S.; Electrochem. commun. 13, 133-137, 2011.
[8] Liu, S.; Ou, J.; Wang, J.; Liu, X,.; Yang, S.; J. Appl. Electrochem. 41, 881-884, 2011.
[9] Yu, H.; He, J.; Sun, L.; Tanaka, S.; Fugetsu, B.; Carbon 51, 94-101, 2013.
[10] Kundu, M.; Liu, L.; J. Power Sources. 243, 676-681, 2013.
[11] Lesiak, B.; Appl.; Surf. Sci. 452, 223-231, 2018.
[12] Wong, S.I.; Lin, H.; Sunarso, J.; Wong, B.T.; Jia, B.; Proc SPIE Int Soc Opt Eng. 11201, 112010L, 2019.
[13] Wei, A.; Mater. Res. Bull. 48, 2855-2860, 2013.
[14] Okhay, O.; Tkach, A.; Staiti, P.; Lufrano, F.; Electrochim. Acta. 353, 136540-136546, 2020.
[15] Ferrari, A.C.; Phys. Rev. Lett. 97, 187401-187406, 2006.
[16] Tuinstra, F.; Koenig, J.L.; J. Chem. Phys. 53, 1126-1130, 1970.
[17] Jiang, Y.; Lu, Y.; Li, F.; Wu, T.; Niu, L.; Chen, W.; Electrochem. commun. 19, 21-24, 2012.
[18] Park, S.; Ruoff, R.S.; Nat. Nanotechnol. 4, 217-223, 2009.
[19] Shao, Y.; Wang, J.; Engelhard, M.; Wang, C.; Lin, Y.; J. Mater. Chem. 20, 743-748, 2010.
[20] Stoller, M.D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R.S.; Nano Lett. 8, 3498-3502, 2008.
[21] Singh, A.; Ojha, A.K.; Chem. Phys. 530, 110607-110612, 2020.
_||_[1] Davies, A.; Yu, A.; CAN.; J. Chem. Eng. 89, 1342-1357, 2011.
[2] Bhat, U.; Meti, S.; Mater.Res. Fou. 64, 181-189, 2020.
[3] Horn, M.; Gupta, B.; MacLeod, J.M.; Liu, J.; Motta, N.; Curr. Opin. Green Sustain. Chem. 17, 42-48, 2019.
[4] Yang, Z.; Tian, J.; Yin, Z.; Cui, C.; Qian, W.; Wei, F.; Carbon 141, 467-480, 2019.
[5] Hilder, M.; Winther-Jensen, B.; Li, D.; Forsyth, M.; MacFarlane, D.R.; Phys.Chem. Chem. Phys. 13, 9187-9193, 2011.
[6] Guo, .H.L.; Wang, X.F.; Qian, Q.Y.; Wang, F.B.; Xia, X.H.; ACS Nano 3, 2653-2659, 2009.
[7] Chen, L.; Tang, Y.; Wang, K.; Liu, C.; Luo, S.; Electrochem. commun. 13, 133-137, 2011.
[8] Liu, S.; Ou, J.; Wang, J.; Liu, X,.; Yang, S.; J. Appl. Electrochem. 41, 881-884, 2011.
[9] Yu, H.; He, J.; Sun, L.; Tanaka, S.; Fugetsu, B.; Carbon 51, 94-101, 2013.
[10] Kundu, M.; Liu, L.; J. Power Sources. 243, 676-681, 2013.
[11] Lesiak, B.; Appl.; Surf. Sci. 452, 223-231, 2018.
[12] Wong, S.I.; Lin, H.; Sunarso, J.; Wong, B.T.; Jia, B.; Proc SPIE Int Soc Opt Eng. 11201, 112010L, 2019.
[13] Wei, A.; Mater. Res. Bull. 48, 2855-2860, 2013.
[14] Okhay, O.; Tkach, A.; Staiti, P.; Lufrano, F.; Electrochim. Acta. 353, 136540-136546, 2020.
[15] Ferrari, A.C.; Phys. Rev. Lett. 97, 187401-187406, 2006.
[16] Tuinstra, F.; Koenig, J.L.; J. Chem. Phys. 53, 1126-1130, 1970.
[17] Jiang, Y.; Lu, Y.; Li, F.; Wu, T.; Niu, L.; Chen, W.; Electrochem. commun. 19, 21-24, 2012.
[18] Park, S.; Ruoff, R.S.; Nat. Nanotechnol. 4, 217-223, 2009.
[19] Shao, Y.; Wang, J.; Engelhard, M.; Wang, C.; Lin, Y.; J. Mater. Chem. 20, 743-748, 2010.
[20] Stoller, M.D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R.S.; Nano Lett. 8, 3498-3502, 2008.
[21] Singh, A.; Ojha, A.K.; Chem. Phys. 530, 110607-110612, 2020.