The Study of the effect of nanographene and nanographene oxide on physical and mechanical properties of natural rubber nanocomposites
Subject Areas : شیمی آلیBagher Mohammadi 1 , Fahimeh Nori 2
1 - Chemistry, Payame Noor UniversityE-mail: bagher.mohammadi@pnu.ac.ir
2 - department of Chemistry, Faculty of Science, Payame Noor University, Tehran, Iran
Keywords: nanocomposite, Graphene oxide nanoparticles, Reduced graphene oxide, Natural rubber (latex),
Abstract :
In this work, natural rubber (latex) nanocomposites were prepared by adding reduced graphene oxide and graphene oxide nanoparticles to the pristine latex. Then some physical and mechanical properties of these nanocomposites were investigated. These properties included tensile strength at peak point, tensile strength at breaking point, tensile percentage, surface cohesion, and rheometry. The experimental results of these nanocomposites were compared with those of natural rubber. The results showed that nanocomposites containing graphene oxide were much more desirable in terms of physical and mechanical properties than nanocomposites containing reduced graphene oxide. Both of these nanocomposites had better results in terms of physical and mechanical properties than pristine natural rubber. The FESEM images showed that the surface of samples which containing nanographene, had better uniformity and adhesion than those of the original latex. The surface adhesion of nanocomposites, containing nanographene oxide was much better and more desirable comparing to the others.
[1] Turjanmaa, K.; Alenius, H.; Mäkinen-Kiljunen, S.; Reunala, T.; Palosuo, T.; “Natural-rubber-latex allergy Chap.” in: “Handbook of Occupational Dermatology”, Edited by Kanerva, L.; Wahlberg, J.E.; Maibach, H.I.; Springer, Berlin, Heidelberg, 2000.
[2] Tanaka, Y.; Rubber Chem. Technol. 74, 355-375, 2001.
[3] Rose, K.; Tenberge, K.B.; Steinbüchel, A.; Biomacromolecules 6, 180-188, 2005.
[4] Zhang, L.; Li, H.; Lai, X.; Liao, X.; Wang, J.; Su, X.; Liu, H.; Wu, W.; Zeng, X.; Composites, Part A 107, 47-54, 2018.
[5] Hosseinmardi, A.; Amiralian, N.; Hayati, A.N.; Martin, D.J.; Annamalai, P.K.; Ind. Crops Prod. 159, 113063, 2021.
[6] Shahidi, S.; Mohammadi, B.; Mohammadi, S.; Vessally, E.; Plast., Rubber Compos. 51, 13-34, 2022.
[7] Phiri, J.; Gane, P.; Maloney, T.C.; Mater. Sci. Eng. B 215, 9-28, 2017.
[8] Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S.I.; Seal, S.; Prog. Mater. Sci. 56, 1178-1271, 2011.
[9] William, S.; Hummers, J.; Offeman, R.E.; J. Am. Chem. Soc. 80, 1339-1339, 1958.
[10] Du, X.; Skachko, I.; Barker, A.; Andrei, E.Y.; Nat. Nanotechnol. 3, 491-495, 2008.
[11] Lerf, A.; He, H.; Forster, M.; Klinowski, J.; J. Phys. Chem. B 102, 4477-4482, 1998.
[12] Berki, P.; László, K.; Tung, N.T.; Karger-Kocsis, J.; J. Reinf. Plast. Compos. 36, 808-817, 2017.
[13] Potts, J. R.; Shankar, O.; Du, L.; Ruoff, R.S.; Macromolecules 45, 6045-6055, 2012.
[14] Zhang, C.; Zhai, T.; Dan, Y.; Turng, L.S.; Polym. Compos. 38, E199-E207, 2017.
[15] Kang, H.; Tang, Y.; Yao, L.; Yang, F.; Fang, Q.; Hui, D.; Composites Part B 112, 1-7, 2017.
[16] Zhang, X.; Xue, X.; Yin, Q.; Jia, H.; Wang, J.; Ji, Q.; Xu, Z.; Composites Part B 111, 243-250, 2017.
[17] Zhang, Y.; Cho, U.R.; Polym. Compos. 39, 3227-3235, 2018.
[18] Kim, J.S.; Yun, J.H.; Kim, I.; Shim, S.E.; J. Ind. Eng. Chem. 17, 325-330, 2011.
[19] Mao, Y.; Wen, S.; Chen, Y.; Zhang, F.; Panine, P.; Chan, T.W.; Zhang, L.; Liang, Y.; Liu, L.; Sci. Rep. 3, 1-7, 2013.
[20] Kim, J.S.; Hong, S.; Park, D.W.; Shim, S. E.; Macromol. Res. 18, 558-565, 2010.
[21] Wu, J.; Huang, G.; Li, H.; Wu, S.; Liu, Y.; Zheng, J.; Polymer 54, 1930-1937, 2013.
[22] Aswathy, T.; Dash, B.; Dey, P.; Nair, S.; Naskar, K.; J. Appl. Polym. Sci. 138, e50746, 2021.
_||_[1] Turjanmaa, K.; Alenius, H.; Mäkinen-Kiljunen, S.; Reunala, T.; Palosuo, T.; “Natural-rubber-latex allergy Chap.” in: “Handbook of Occupational Dermatology”, Edited by Kanerva, L.; Wahlberg, J.E.; Maibach, H.I.; Springer, Berlin, Heidelberg, 2000.
[2] Tanaka, Y.; Rubber Chem. Technol. 74, 355-375, 2001.
[3] Rose, K.; Tenberge, K.B.; Steinbüchel, A.; Biomacromolecules 6, 180-188, 2005.
[4] Zhang, L.; Li, H.; Lai, X.; Liao, X.; Wang, J.; Su, X.; Liu, H.; Wu, W.; Zeng, X.; Composites, Part A 107, 47-54, 2018.
[5] Hosseinmardi, A.; Amiralian, N.; Hayati, A.N.; Martin, D.J.; Annamalai, P.K.; Ind. Crops Prod. 159, 113063, 2021.
[6] Shahidi, S.; Mohammadi, B.; Mohammadi, S.; Vessally, E.; Plast., Rubber Compos. 51, 13-34, 2022.
[7] Phiri, J.; Gane, P.; Maloney, T.C.; Mater. Sci. Eng. B 215, 9-28, 2017.
[8] Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S.I.; Seal, S.; Prog. Mater. Sci. 56, 1178-1271, 2011.
[9] William, S.; Hummers, J.; Offeman, R.E.; J. Am. Chem. Soc. 80, 1339-1339, 1958.
[10] Du, X.; Skachko, I.; Barker, A.; Andrei, E.Y.; Nat. Nanotechnol. 3, 491-495, 2008.
[11] Lerf, A.; He, H.; Forster, M.; Klinowski, J.; J. Phys. Chem. B 102, 4477-4482, 1998.
[12] Berki, P.; László, K.; Tung, N.T.; Karger-Kocsis, J.; J. Reinf. Plast. Compos. 36, 808-817, 2017.
[13] Potts, J. R.; Shankar, O.; Du, L.; Ruoff, R.S.; Macromolecules 45, 6045-6055, 2012.
[14] Zhang, C.; Zhai, T.; Dan, Y.; Turng, L.S.; Polym. Compos. 38, E199-E207, 2017.
[15] Kang, H.; Tang, Y.; Yao, L.; Yang, F.; Fang, Q.; Hui, D.; Composites Part B 112, 1-7, 2017.
[16] Zhang, X.; Xue, X.; Yin, Q.; Jia, H.; Wang, J.; Ji, Q.; Xu, Z.; Composites Part B 111, 243-250, 2017.
[17] Zhang, Y.; Cho, U.R.; Polym. Compos. 39, 3227-3235, 2018.
[18] Kim, J.S.; Yun, J.H.; Kim, I.; Shim, S.E.; J. Ind. Eng. Chem. 17, 325-330, 2011.
[19] Mao, Y.; Wen, S.; Chen, Y.; Zhang, F.; Panine, P.; Chan, T.W.; Zhang, L.; Liang, Y.; Liu, L.; Sci. Rep. 3, 1-7, 2013.
[20] Kim, J.S.; Hong, S.; Park, D.W.; Shim, S. E.; Macromol. Res. 18, 558-565, 2010.
[21] Wu, J.; Huang, G.; Li, H.; Wu, S.; Liu, Y.; Zheng, J.; Polymer 54, 1930-1937, 2013.
[22] Aswathy, T.; Dash, B.; Dey, P.; Nair, S.; Naskar, K.; J. Appl. Polym. Sci. 138, e50746, 2021.