Synthesis of layered double hydroxide nanostructures for adsorption of crystal violet dye from aqueous solutions
Subject Areas :Ahmad Raeisi vanani 1 , Saeid Asadpour 2 , Narges Sarmast 3 , Masoomeh Kooravand 4
1 - M.Sc. Student of Analytical Chemistry, Department of Chemistry, Faculty of Science, University of Shahrekord, Shahrekord, Iran.
2 - Assistant Prof. of Analytical Chemistry, Department of Chemistry, Faculty of Science, University of Shahrekord, Shahrekord, Iran.
3 - PhD of Organic Chemistry, Department of Chemistry, Faculty of Science, University of Shahrekord, Shahrekord, Iran.
4 - PhD of Analytical Chemistry, Department of Chemistry, Faculty of Science, University of Shahrekord, Shahrekord, Iran.
Keywords: Experimental design, Crystal violet, Ca/Al/SDS Layered double hydroxide,
Abstract :
The presence of crystal violet dye in various industries wastewater causes environmental pollution and various diseases in humans and other organisms. Therefore, research about the elimination or destruction of this pollutant is necessary. In present study, the efficiency of layer double hydroxides modified with sodium dodecyl sulfate (LDH/SDS) as adsorbent was studied to remove this pollutant from wastewater. After synthesis of the adsorbent, it was characterized with instrumental techniques such as X-ray diffraction (XRD), Fourier transformation of infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The effect of parameters such as pH, contact time, and initial concentration was studied with experimental design. Langmuir, Freundlich, and Tamkin's equations were estimated in order to find the best isotherm model for absorption data. Experimental data were fitted with Pseudo-First-Order, Pseudo-Second-Order, and interparticle diffusion kinetic models, and the best kinetic model was presented. The validity of equation was confirmed with the results of experimental design and their statistical analysis. Analysis of the data showed that the adsorption of crystal violet on LDH/SDS follows Langmuir isotherm model and Pseudo-Second-Order kinetic model.
[1] Chaudhary, B.; Violet, T.E.; J. Interdiscipl. Cycle Res. 12, 390–396, 2020.
[2] Bonin, A.M.; Farquharson, J.B.; Baker, R.S.U.; Mutat. Res. Toxicol. 89, 21–34, 1981.
[3] Muthukumaran, C.; Sivakumar, V.M.; Thirumarimurugan, M.; J. Taiwan Inst. Chem. Eng., 63, 354–362, 2016.
[4] Brião, G.V.; Jahn, S.L.; Foletto, E.L.; Dotto, G.L.; J. Colloid Interface Sci. 508, 313–322, 2017.
[5] Elmoubarki, R.; Mahjoubi, F.Z.; Elhalil, A.; Tounsadi, H.; Abdennouri, M.; Sadiq, M.; Qourzal, S.; A, Zouhri, A.; Barka, N.; J. Mater. Res. Technol. 6, 271–283, 2017.
[6] Dil, E.A.; M, Ghaedi.; Ghaedi, A.; Asfaram, A.; Jamshidi, M.; Purkait, M.K.; J. Taiwan Inst. Chem. Eng. 59, 210–220, 2016.
[7] Shoukat, S.; Bhatti, H.N.; Iqbal, M.; Noreen, S.; Microporous Mesoporous Mater. 239, 180–189, 2017.
[8] Fabryanty, R.; J. Environ. Chem. Eng. 5, 5677–5687, 2017.
[9] AbdEl-Salam, A.H.; Ewais, H.A.; Basaleh, A.S.; J. Mol. Liq. 248, 833–841, 2017.
[10] Maleki, S.; Falaki, F.; Karimi, M.; J. Nanostructure Chem. 9, 129–139, 2019.
[11] Sabna, V.; Thampi, S.G.; Chandrakaran, S.; Ecotoxicol. Environ. Saf. 134, 390–397, 2016.
[12] Tan, X.; J. Environ. Manage. 184, 85–93, 2016.
[13] George, G.; Saravanakumar, M.P.; Environ. Sci. Pollut. Res. 25, 30236–30254, 2018.
[14] Khan, S.A.; Khan, S.B.; Asiri, A.M.; RSC Adv. 6, 83196–83208, 2016.
[15] Foo, K.Y.; Hameed, B.H.; Chem. Eng. J. 156, 2–10, 2010.
[16] Qiu, H.; Lv, L.; Pan, B.; Zhang, Q.-J.; Zhang, W.; Zhang, Q.-X.; J. Zhejiang Univ. A 10, 716–724, 2009.
[17] Palapa, N.R.; Taher, T.; Rahayu, B.R.; Mohadi, R.; Rachmat, A.; Lesbani, A.; Bull. Chem. React. Eng. Catal. 15, 525–537, 2020.
[18] Das, S.; Dash, S.K.; Parida, K.M.; ACS Omega. 3, 2532–2545, 2018.
[19] Dean, A.; Voss, D.; Draguljić, D.; "Design and Analysis of Experiments", Springer, New York, 1999.
[20] Puri, C.; Sumana, G.; Appl. Clay Sci. 166, 102–112, 2018.
[21] Marco-Brown, J.L.; Chem. Eng. J. 333, 495–504, 2018.
[22] Kulkarni, M.R.; Revanth, T.; Acharya, A.; Bhat, P.; Resour. Technol. 3, 71–77, 2017.
_||_[1] Chaudhary, B.; Violet, T.E.; J. Interdiscipl. Cycle Res. 12, 390–396, 2020.
[2] Bonin, A.M.; Farquharson, J.B.; Baker, R.S.U.; Mutat. Res. Toxicol. 89, 21–34, 1981.
[3] Muthukumaran, C.; Sivakumar, V.M.; Thirumarimurugan, M.; J. Taiwan Inst. Chem. Eng., 63, 354–362, 2016.
[4] Brião, G.V.; Jahn, S.L.; Foletto, E.L.; Dotto, G.L.; J. Colloid Interface Sci. 508, 313–322, 2017.
[5] Elmoubarki, R.; Mahjoubi, F.Z.; Elhalil, A.; Tounsadi, H.; Abdennouri, M.; Sadiq, M.; Qourzal, S.; A, Zouhri, A.; Barka, N.; J. Mater. Res. Technol. 6, 271–283, 2017.
[6] Dil, E.A.; M, Ghaedi.; Ghaedi, A.; Asfaram, A.; Jamshidi, M.; Purkait, M.K.; J. Taiwan Inst. Chem. Eng. 59, 210–220, 2016.
[7] Shoukat, S.; Bhatti, H.N.; Iqbal, M.; Noreen, S.; Microporous Mesoporous Mater. 239, 180–189, 2017.
[8] Fabryanty, R.; J. Environ. Chem. Eng. 5, 5677–5687, 2017.
[9] AbdEl-Salam, A.H.; Ewais, H.A.; Basaleh, A.S.; J. Mol. Liq. 248, 833–841, 2017.
[10] Maleki, S.; Falaki, F.; Karimi, M.; J. Nanostructure Chem. 9, 129–139, 2019.
[11] Sabna, V.; Thampi, S.G.; Chandrakaran, S.; Ecotoxicol. Environ. Saf. 134, 390–397, 2016.
[12] Tan, X.; J. Environ. Manage. 184, 85–93, 2016.
[13] George, G.; Saravanakumar, M.P.; Environ. Sci. Pollut. Res. 25, 30236–30254, 2018.
[14] Khan, S.A.; Khan, S.B.; Asiri, A.M.; RSC Adv. 6, 83196–83208, 2016.
[15] Foo, K.Y.; Hameed, B.H.; Chem. Eng. J. 156, 2–10, 2010.
[16] Qiu, H.; Lv, L.; Pan, B.; Zhang, Q.-J.; Zhang, W.; Zhang, Q.-X.; J. Zhejiang Univ. A 10, 716–724, 2009.
[17] Palapa, N.R.; Taher, T.; Rahayu, B.R.; Mohadi, R.; Rachmat, A.; Lesbani, A.; Bull. Chem. React. Eng. Catal. 15, 525–537, 2020.
[18] Das, S.; Dash, S.K.; Parida, K.M.; ACS Omega. 3, 2532–2545, 2018.
[19] Dean, A.; Voss, D.; Draguljić, D.; "Design and Analysis of Experiments", Springer, New York, 1999.
[20] Puri, C.; Sumana, G.; Appl. Clay Sci. 166, 102–112, 2018.
[21] Marco-Brown, J.L.; Chem. Eng. J. 333, 495–504, 2018.
[22] Kulkarni, M.R.; Revanth, T.; Acharya, A.; Bhat, P.; Resour. Technol. 3, 71–77, 2017.