Application of nanoporous metal-organic frameworks as chemical sensors
Subject Areas :Bahar Jeyhoon 1 , Yeganeh Davoudabadi Farahani 2 , Vahid Safarifard 3
1 - Ph.D Student of Inorganic Chemistry, Faculty of Chemistry, Iran University of Science and Technology, Tehran, Iran
2 - M.Sc. in Nanochemistry, Faculty of Chemistry, Iran University of Science and Technology, Tehran, Iran
3 - Assistant Prof. of Inorganic Chemistry, Faculty of Chemistry, Iran University of Science and Technology, Tehran, Iran.
Keywords: detection, environment, sensor, Nanoporous, Metal-organic frameworks,
Abstract :
With the growth of the human population, the increasing activities of factories, and subsequently increasing the emission of environmental pollutants in the air, the rapid measurement of these pollutants in different environments is essential more than ever. Sensors based on metal-organic frameworks have surpassed other chemical sensors in terms of construction cost, simplicity of the method, short response time, and good reversibility, and have been able to obtain a special place in the detection of toxic and hazardous pollutants. These nanoporous compounds, which are formed by the connection of metal centers and organic ligands through coordination bonding, have gathered the attention of many researchers due to their high chemical and thermal stability. The utilization of different aspects of the new synthetic and structural of this systems has led to a diverse success in the field of chemical and physical properties, many of which are unprecedented. Metal-organic frameworks have shown promising horizon in sensing applications due to having unique properties such as large sizes of cavities, high surface area, selected adsorption of small molecules and optical responses in the presence of guest molecules. In this article, we investigated the principles of the design of organic metal-framework sensors and the sensing mechanisms of these compounds.
[1] Kuppler, R.J.; Timmons, D.J.; Fang, Q.R.; Li, J.R.; Makal, T.A.; Young, M.D.; Yuan, D.; Zhao, D.; Zhuang, W.; Zhou, H.C.; Coord. Chem. Rev. 253, 3042-3066, 2009.
[2] Pandey, S.K.; Kim, K.-H.; Tang, K.T.; Trends Anal. Chem. 32, 87-99, 2012.
[3] Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O.M.; Nature 402, 276-279, 1999.
[4] Besheli, M.E.; Rahimi, R.; Farahani, Y.D.; Safarifard, V.; Inorg. Chim. Acta 495, 118956, 2019.
[5] Yu, Q.; Li, Z.; Cao, Q.; Qu, S.; Jia, Q.; Trends Anal. Chem.,115939, 2020.
[6] Eddaoudi, M.; Moler, D.B.; Li, H.; Chen, B.; Reineke, T.M.; O'keeffe, M.; Yaghi, O.M.; Acc. Chem. Res. 34, 319-330, 2001.
[7] Allendorf, M.; Bauer, C.; Bhakta, R.; Houk, R.; Chem. Soc. Rev. 38, 1330-1352, 2009.
[8] Zou, R.; Abdel-Fattah, A.I.; Xu, H.; Zhao, Y.; Hickmott, D.D.; CrystEngComm 12, 1337-1353, 2010.
[9] Zhang, Y.; Yuan, S.; Day, G.; Wang, X.; Yang, X.; Zhou, H.-C.; Coord. Chem. Rev. 354, 28-45, 2018.
[10] Bao, Z.; Chang, G.; Xing, H.; Krishna, R.; Ren, Q.; Chen, B.; Energy Environ. Sci., 9, 3612-3641, 2016.
[11] Lustig, W.P.; Mukherjee, S.; Rudd, N.D.; Desai, A.V.; Li, J.; Ghosh, S.K.; Chem. Soc. Rev. 46, 3242-3285, 2017.
[12] Kumar, P.; Deep, A.; Kim, K.H.; Trends Anal. Chem. 73, 39-53, 2015.
[13] Burnett, B.J.; Barron, P.M.; Choe, W.; CrystEngComm 14, 3839-3846, 2012.
[14] Kazemi, S.; Safarifard, V.; Polyhedron154, 236-251, 2018.
[15] O’Keeffe, M.; Yaghi, O.M.; Chem. Rev. 112, 675-702, 2012.
[16] Kukkar, D.; Vellingiri, K.; Kim, K. H.; Deep, A.; Sens. Actuator B-Chem. 273, 1346-1370, 2018.
[17] Amini, A.; Kazemi, S.; Safarifard, V.; Polyhedron 114260, 2019.
[18] Chen, W.; Wang, J. Y.; Chen, C.; Yue, Q.; Yuan, H. M.; Chen, J. S.; Wang, S. N.; Inorganic Chemistry 42, 944-946, 2003.
[19] Zhao, Y.; Li, D.; J. Mater. Chem. C 8(1), 278-286, 2020.
[20] Cui, Y.; Zhu, F.; Chen, B.; Qian, G.; Chem. Comm. 51, 7420-7431, 2015.
[21] Pal, S.; Bharadwaj, P.K.; Cryst. Growth Des. 16, 5852-5858, 2016.
[22] Howarth, A.J.; Liu, Y.; Li, P.; Li, Z.; Wang, T.C.; Hupp, J. T.; Farha, O. K.; Nat. Rev. Mater. 1, 1-15, 2016.
[23] Yang, C .; Kaipa, U.; Mather, Q.Z.; Wang, X.; Nesterov, V.; Venero, A.F.; Omary, M.A.; J. Am. Chem. Soc. 133, 18094-18097, 2011.
[24] Denny, M.S.; Moreton, J.C.; Benz, L.; Cohen, S.M.; Nat. Rev. Mater. 1, 1-17, 2016.
[25] Daly, B.; Ling, J.; De Silva, A.P.; Chem. Soc. Rev. 44, 4203-4211, 2015.
[26] Chen, Y.Z.; Jiang, H.L.; Chem. Mater. 28, 6698-6704, 2016.
[27] Shustova, N.B.; Cozzolino, A.F.; Reineke, S.; Baldo, M.; Dincă, M.; J. Am. Chem. Soc. 135, 13326-13329, 2013.
[28] Wang, B.; Lv, X.L.; Feng, D.; Xie, L.H.; Zhang, J.; Li, M.; Xie, Y.; Li, J.R.; Zhou, H.C.; J. Am. Chem. Soc., 138, 6204-6216, 2016.
[29] Lakowicz, J.R. (Ed.); “Principles of Fluorescence Spectroscopy”, Springer US, Boston, 2006.
[30] Lin, S.H.; Xiao, W.Z.; Dietz, W.; Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 47, 3698–3706, 1993.
[31] S.W. Thomas, G.D. Joly, T.M. Swager, Chem. Rev., 107, 1339–1386, 2007.
[32] Moore, E.G.; Samuel, A.P.; Raymond, K.N.; Acc. Chem. Res. 42, 542-552, 2009.
[33] Hu, Z.; Deibert, B.J.; Li, J.; Chem. Soc. Rev. 43, 5815-584, 2014.
[34] Pramanik, S.; Zheng, C.; Zhang, X.; Emge, T.J.; Li, J.; J. Am. Chem. Soc. 133, 4153-4155, 2011.
[35] Jia, P.; Wang, Z.; Zhang, Y.; Zhang, D.; Gao, W.; Su, Y.; Li, Y.; Yang, C.; Spectrochim. Acta A 230, 118084, 2020.
[36] Zhou, X.; Guo, X.; Liu, L.; Zhai, H.; Meng, Q.; Shi, Z.; Tai, X.; RSC Adv. 10, 4817-4824, 2020.
[37] ZHANG, Y.; Jiaxiang, L.; Xiaohan, W.; Wenquan, T.; Zhuo, L.; Anal. Chim. Acta, 2020.
[38] Ge, K.M.; Wang, D.; Xu, Z.J.; Chu, R.Q.; J. Mol. Struct. 1208, 127862, 2020.
[39] Qiao, Y.; Guo, J.; Li, D.; Li, H.; Xue, X.; Jiang, W.; Che, G.; Guan, W.; J. Solid State Chem. 290(3), 121610, 2020.
[40] Moradi, E.; Rahimi, R.; Safarifard, V.; Polyhedron 159, 251-258, 2019.
[41] Shayegan, H.; Farahani, Y.D.; Safarifard, V.; J. Solid State Chem. 279,12096, 2019.
[42] Moradi, E.; Rahimi, R.; Farahani, Y.D.; Safarifard, V.; J. Solid State Chem., 282, 121103, 2020.
[43] Farahani, Y.D.; Safarifard, V.; J. Solid State Chem. 270, 428-435, 2019.
[44] Farahani, Y.D.; Safarifard, V.; J. Solid State Chem. 275, 131-140, 2019.
[45] Khezerloo, E.; Mousavi-khoshdel, S.; Safarifard, V.; Polyhedron 166, 166-174, 2019.
[46] Chen, E.X.; Yang, H.;, Zhang, J.; Inorg. Chem. 53, 5411-5413, 2014.
[47] Yi, F.Y.; Wang, S.C.; Gu, M.; Zheng, J.Q.; Han, L.; J. Mater. Chem. C, 6, 2010-2018, 2018.
[48] Li, Y.; Zhang, S.; Song, D.; Angew. Chem. 125, 738-741, 2013.
[49] Yi, F.Y.; Chen, J.; Wang, S.C.; Gu, M.; Han, L.; Chem. Comm. 54, 8233-8236, 2018.
[50] Xu, H.; Liu, F.; Cui, Y.; Chen, B.; Qian, G.; Chem. Comm. 47, 3153-3155, 2011.
[51] Tarasi, S.; Tehrani, A.A.; Morsali, A.; Sens. Actuator B-Chem. 305, 127341, 2020.
[52] Zhong, F.; Zhang, X.; Zheng, C.; Xu, H.; Gao, J.; Xu, S.; J. Solid State Chem. 288, 121391, 2020.
[53] Hazra, A.; Bej, S.; Mondal, A.; Murmu, N.C.; Banerjee, P.; ACS Omega 5, 15949-15961, 2020.
[54] Deibert, B.J.; Li, J.; Chem. Comm. 50, 9636-9639, 2014.
[55] Cui, J.; Gao, N.; Wang, C.; Zhu, W.; Li, J.; Wang, H.; Seidel, P.; Ravoo, B.J.; Li, G.; Nanoscale 6(20), 11995-12001, 2014.
[56] Yi, F.Y.; Wang, Y.; Li, J.P.; Wu, D.; Lan, Y.Q.; Sun, Z.M.; Mater. Horiz. 2, 245-251, 2015.
[57] Qi, Z.; Chen, Y.; Biosens. Bioelectron. 87, 236-241, 2017.
[58] Ohira, S.I.; Miki, Y.; Matsuzaki, T.; Nakamura, N.; Sato, Y.K.; Hirose, Y.; Toda, K.; Anal. Chim. Acta, 886, 188-193, 2015.
[59] Yi, F.Y.; Chen, D.; Wu, M.K.; Han, L.; Jiang, H.L.; ChemPlusChem 81, 675-690, 2016.
[60] Li, Y.; Polyhedron 179, 114413, 2020.
[61] Miyata, K.; Konno, Y.; Nakanishi, T.; Kobayashi, A.; Kato, M.; Fushimi, K.; Hasegawa, Y.; Angew. Chem. International Edition 52, 6413-6416, 2013.
[62] Zhang, R.C.; Wang, J.J.; Zhang, J.C.; Wang, M.Q.; Sun, M.; Ding, F.; Zhang, D.J.; An, Y.L.; Inorg. Chem. 55, 7556-7563, 2016.
_||_[1] Kuppler, R.J.; Timmons, D.J.; Fang, Q.R.; Li, J.R.; Makal, T.A.; Young, M.D.; Yuan, D.; Zhao, D.; Zhuang, W.; Zhou, H.C.; Coord. Chem. Rev. 253, 3042-3066, 2009.
[2] Pandey, S.K.; Kim, K.-H.; Tang, K.T.; Trends Anal. Chem. 32, 87-99, 2012.
[3] Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O.M.; Nature 402, 276-279, 1999.
[4] Besheli, M.E.; Rahimi, R.; Farahani, Y.D.; Safarifard, V.; Inorg. Chim. Acta 495, 118956, 2019.
[5] Yu, Q.; Li, Z.; Cao, Q.; Qu, S.; Jia, Q.; Trends Anal. Chem.,115939, 2020.
[6] Eddaoudi, M.; Moler, D.B.; Li, H.; Chen, B.; Reineke, T.M.; O'keeffe, M.; Yaghi, O.M.; Acc. Chem. Res. 34, 319-330, 2001.
[7] Allendorf, M.; Bauer, C.; Bhakta, R.; Houk, R.; Chem. Soc. Rev. 38, 1330-1352, 2009.
[8] Zou, R.; Abdel-Fattah, A.I.; Xu, H.; Zhao, Y.; Hickmott, D.D.; CrystEngComm 12, 1337-1353, 2010.
[9] Zhang, Y.; Yuan, S.; Day, G.; Wang, X.; Yang, X.; Zhou, H.-C.; Coord. Chem. Rev. 354, 28-45, 2018.
[10] Bao, Z.; Chang, G.; Xing, H.; Krishna, R.; Ren, Q.; Chen, B.; Energy Environ. Sci., 9, 3612-3641, 2016.
[11] Lustig, W.P.; Mukherjee, S.; Rudd, N.D.; Desai, A.V.; Li, J.; Ghosh, S.K.; Chem. Soc. Rev. 46, 3242-3285, 2017.
[12] Kumar, P.; Deep, A.; Kim, K.H.; Trends Anal. Chem. 73, 39-53, 2015.
[13] Burnett, B.J.; Barron, P.M.; Choe, W.; CrystEngComm 14, 3839-3846, 2012.
[14] Kazemi, S.; Safarifard, V.; Polyhedron154, 236-251, 2018.
[15] O’Keeffe, M.; Yaghi, O.M.; Chem. Rev. 112, 675-702, 2012.
[16] Kukkar, D.; Vellingiri, K.; Kim, K. H.; Deep, A.; Sens. Actuator B-Chem. 273, 1346-1370, 2018.
[17] Amini, A.; Kazemi, S.; Safarifard, V.; Polyhedron 114260, 2019.
[18] Chen, W.; Wang, J. Y.; Chen, C.; Yue, Q.; Yuan, H. M.; Chen, J. S.; Wang, S. N.; Inorganic Chemistry 42, 944-946, 2003.
[19] Zhao, Y.; Li, D.; J. Mater. Chem. C 8(1), 278-286, 2020.
[20] Cui, Y.; Zhu, F.; Chen, B.; Qian, G.; Chem. Comm. 51, 7420-7431, 2015.
[21] Pal, S.; Bharadwaj, P.K.; Cryst. Growth Des. 16, 5852-5858, 2016.
[22] Howarth, A.J.; Liu, Y.; Li, P.; Li, Z.; Wang, T.C.; Hupp, J. T.; Farha, O. K.; Nat. Rev. Mater. 1, 1-15, 2016.
[23] Yang, C .; Kaipa, U.; Mather, Q.Z.; Wang, X.; Nesterov, V.; Venero, A.F.; Omary, M.A.; J. Am. Chem. Soc. 133, 18094-18097, 2011.
[24] Denny, M.S.; Moreton, J.C.; Benz, L.; Cohen, S.M.; Nat. Rev. Mater. 1, 1-17, 2016.
[25] Daly, B.; Ling, J.; De Silva, A.P.; Chem. Soc. Rev. 44, 4203-4211, 2015.
[26] Chen, Y.Z.; Jiang, H.L.; Chem. Mater. 28, 6698-6704, 2016.
[27] Shustova, N.B.; Cozzolino, A.F.; Reineke, S.; Baldo, M.; Dincă, M.; J. Am. Chem. Soc. 135, 13326-13329, 2013.
[28] Wang, B.; Lv, X.L.; Feng, D.; Xie, L.H.; Zhang, J.; Li, M.; Xie, Y.; Li, J.R.; Zhou, H.C.; J. Am. Chem. Soc., 138, 6204-6216, 2016.
[29] Lakowicz, J.R. (Ed.); “Principles of Fluorescence Spectroscopy”, Springer US, Boston, 2006.
[30] Lin, S.H.; Xiao, W.Z.; Dietz, W.; Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 47, 3698–3706, 1993.
[31] S.W. Thomas, G.D. Joly, T.M. Swager, Chem. Rev., 107, 1339–1386, 2007.
[32] Moore, E.G.; Samuel, A.P.; Raymond, K.N.; Acc. Chem. Res. 42, 542-552, 2009.
[33] Hu, Z.; Deibert, B.J.; Li, J.; Chem. Soc. Rev. 43, 5815-584, 2014.
[34] Pramanik, S.; Zheng, C.; Zhang, X.; Emge, T.J.; Li, J.; J. Am. Chem. Soc. 133, 4153-4155, 2011.
[35] Jia, P.; Wang, Z.; Zhang, Y.; Zhang, D.; Gao, W.; Su, Y.; Li, Y.; Yang, C.; Spectrochim. Acta A 230, 118084, 2020.
[36] Zhou, X.; Guo, X.; Liu, L.; Zhai, H.; Meng, Q.; Shi, Z.; Tai, X.; RSC Adv. 10, 4817-4824, 2020.
[37] ZHANG, Y.; Jiaxiang, L.; Xiaohan, W.; Wenquan, T.; Zhuo, L.; Anal. Chim. Acta, 2020.
[38] Ge, K.M.; Wang, D.; Xu, Z.J.; Chu, R.Q.; J. Mol. Struct. 1208, 127862, 2020.
[39] Qiao, Y.; Guo, J.; Li, D.; Li, H.; Xue, X.; Jiang, W.; Che, G.; Guan, W.; J. Solid State Chem. 290(3), 121610, 2020.
[40] Moradi, E.; Rahimi, R.; Safarifard, V.; Polyhedron 159, 251-258, 2019.
[41] Shayegan, H.; Farahani, Y.D.; Safarifard, V.; J. Solid State Chem. 279,12096, 2019.
[42] Moradi, E.; Rahimi, R.; Farahani, Y.D.; Safarifard, V.; J. Solid State Chem., 282, 121103, 2020.
[43] Farahani, Y.D.; Safarifard, V.; J. Solid State Chem. 270, 428-435, 2019.
[44] Farahani, Y.D.; Safarifard, V.; J. Solid State Chem. 275, 131-140, 2019.
[45] Khezerloo, E.; Mousavi-khoshdel, S.; Safarifard, V.; Polyhedron 166, 166-174, 2019.
[46] Chen, E.X.; Yang, H.;, Zhang, J.; Inorg. Chem. 53, 5411-5413, 2014.
[47] Yi, F.Y.; Wang, S.C.; Gu, M.; Zheng, J.Q.; Han, L.; J. Mater. Chem. C, 6, 2010-2018, 2018.
[48] Li, Y.; Zhang, S.; Song, D.; Angew. Chem. 125, 738-741, 2013.
[49] Yi, F.Y.; Chen, J.; Wang, S.C.; Gu, M.; Han, L.; Chem. Comm. 54, 8233-8236, 2018.
[50] Xu, H.; Liu, F.; Cui, Y.; Chen, B.; Qian, G.; Chem. Comm. 47, 3153-3155, 2011.
[51] Tarasi, S.; Tehrani, A.A.; Morsali, A.; Sens. Actuator B-Chem. 305, 127341, 2020.
[52] Zhong, F.; Zhang, X.; Zheng, C.; Xu, H.; Gao, J.; Xu, S.; J. Solid State Chem. 288, 121391, 2020.
[53] Hazra, A.; Bej, S.; Mondal, A.; Murmu, N.C.; Banerjee, P.; ACS Omega 5, 15949-15961, 2020.
[54] Deibert, B.J.; Li, J.; Chem. Comm. 50, 9636-9639, 2014.
[55] Cui, J.; Gao, N.; Wang, C.; Zhu, W.; Li, J.; Wang, H.; Seidel, P.; Ravoo, B.J.; Li, G.; Nanoscale 6(20), 11995-12001, 2014.
[56] Yi, F.Y.; Wang, Y.; Li, J.P.; Wu, D.; Lan, Y.Q.; Sun, Z.M.; Mater. Horiz. 2, 245-251, 2015.
[57] Qi, Z.; Chen, Y.; Biosens. Bioelectron. 87, 236-241, 2017.
[58] Ohira, S.I.; Miki, Y.; Matsuzaki, T.; Nakamura, N.; Sato, Y.K.; Hirose, Y.; Toda, K.; Anal. Chim. Acta, 886, 188-193, 2015.
[59] Yi, F.Y.; Chen, D.; Wu, M.K.; Han, L.; Jiang, H.L.; ChemPlusChem 81, 675-690, 2016.
[60] Li, Y.; Polyhedron 179, 114413, 2020.
[61] Miyata, K.; Konno, Y.; Nakanishi, T.; Kobayashi, A.; Kato, M.; Fushimi, K.; Hasegawa, Y.; Angew. Chem. International Edition 52, 6413-6416, 2013.
[62] Zhang, R.C.; Wang, J.J.; Zhang, J.C.; Wang, M.Q.; Sun, M.; Ding, F.; Zhang, D.J.; An, Y.L.; Inorg. Chem. 55, 7556-7563, 2016.