بهبود خصوصیات مکانیکی ، به ویژه افزایش مقاومت لوله ها توسط میکرو ساختار فلزات با استفاده از روش تغییر شکل پلاستیک شدید
Subject Areas : Smart & Advanced Materialsسید حسن سجادی 1 , حسین پور اکبری 2 , سیامک صادقی 3 , امید میرجابری 4
1 - Department of Mechanical Engineering, Semnan Branch, Islamic Azad University, Semnan, Iran
2 - Omran-Sanat Establishment, Tehran, Iran
3 - AB-Fam Conditioning Engineering Co, Tehran, Iran
4 - Dept of Mechanical Engineering, Iran Khodro University of Applied Sciences, Tehran, Iran
Keywords:
Abstract :
[1] M. Kawasaki, T.G. Langdon, Principles of superplasticity in ultrafine-grained materials, Journal of Materials Science, 42 (2007) 1782-1796.
[2] R.Z. Valiev, A.V. Korznikov, R.R. Mulyukov, Structure and properties of ultrafine-grained materials produced by severe plastic deformation, Materials Science and Engineering: A, 168 (1993) 141-148.
[3] A. Rosochowski, Processing metals by severe plastic deformation, in: Solid State Phenomena, Trans Tech Publ, 2005, pp. 13-22.
[4] N. Tsuji, Research trend on ultrafine grained light metals: From a viewpoint of physical metallurgy, Materia Japan, 43 (2004) 405-410.
[5] L. Tóth, M. Arzaghi, J. Fundenberger, B. Beausir, O. Bouaziz, R. Arruffat-Massion, Severe plastic deformation of metals by high-pressure tube twisting, Scripta Materialia, 60 (2009) 175-177.
[6] M. Mohebbi, A. Akbarzadeh, Accumulative spin-bonding (ASB) as a novel SPD process for fabrication of nanostructured tubes, Materials Science and Engineering: A, 528 (2010) 180-188.
[7] A. Zangiabadi, M. Kazeminezhad, Development of a novel severe plastic deformation method for tubular materials: Tube Channel Pressing (TCP), Materials Science and Engineering: A, 528 (2011) 5066-5072.
[8] G. Faraji, M.M. Mashhadi, H.S. Kim, Tubular channel angular pressing (TCAP) as a novel severe plastic deformation method for cylindrical tubes, Materials Letters, 65 (2011) 3009-3012.
[9] G. Faraji, A. Babaei, M.M. Mashhadi, K. Abrinia, Parallel tubular channel angular pressing (PTCAP) as a new severe plastic deformation method for cylindrical tubes, Materials Letters, 77 (2012) 82-85.
[10] H. Torabzadeh, G. Faraji, E. Zalnezhad, Cyclic flaring and sinking (CFS) as a new severe plastic deformation method for thin-walled cylindrical tubes, Transactions of the Indian Institute of Metals, 69 (2016) 1217-1222.
[11] A. Babaei, M. Mashhadi, H. Jafarzadeh, Tube cyclic expansion-extrusion (TCEE) as a novel severe plastic deformation method for cylindrical tubes, Journal of Materials Science, 49 (2014) 3158-3165.
[12] A. Babaei, M. Mashhadi, Characterization of ultrafine-grained aluminum tubes processed by Tube Cyclic Extrusion–Compression (TCEC), Materials Characterization, 95 (2014) 118-128.
[13] H. Jafarzadeh, K. Abrinia, A. Babaei, RETRACTED: Repetitive tube expansion and shrinking (RTES) as a novel SPD method for fabrication of nanostructured tubes, in, Elsevier, 2014.
[14] M.J. Zehetbauer, R.Z. Valiev, Nanomaterials by severe plastic deformation, John Wiley & Sons, 2006.
[15] P.B. Berbon, M. Furukawa, Z. Horita, M. Nemoto, T.G. Langdon, Influence of pressing speed on microstructural development in equal-channel angular pressing, Metallurgical and Materials Transactions A, 30 (1999) 1989-1997.
[16] K.F. Al-Hajeri, The grain coarsening and subsequent transformation of austenite in the HSLA steel during high temperature thermomechanical processing, in, University of Pittsburgh, 2005.
[17] Y. Miyahara, Z. Horita, T.G. Langdon, Exceptional superplasticity in an AZ61 magnesium alloy processed by extrusion and ECAP, Materials Science and Engineering: A, 420 (2006) 240-244.
[18] R.Z. Valiev, Superior strength in ultrafine-grained materials produced by SPD processing, Materials Transactions, 55 (2014) 13-18.
[19] A. Pougis, L. Toth, O. Bouaziz, J. Fundenberger, D. Barbier, R. Arruffat, Stress and strain gradients in high-pressure tube twisting, Scripta Materialia, 66 (2012) 773-776.
[20] M. Arzaghi, J. Fundenberger, L. Toth, R. Arruffat, L. Faure, B. Beausir, X. Sauvage, Microstructure, texture and mechanical properties of aluminum processed by high-pressure tube twisting, Acta materialia, 60 (2012) 4393-4408.
[21] Y. Miyajima, M. Mitsuhara, S. Hata, H. Nakashima, N. Tsuji, Quantification of internal dislocation density using scanning transmission electron microscopy in ultrafine grained pure aluminium fabricated by severe plastic deformation, Materials science and engineering: A, 528 (2010) 776-779.
[22] M. Vega, R. Bolmaro, M. Ferrante, V. Sordi, A. Kliauga, The influence of deformation path on strain characteristics of AA1050 aluminium processed by equal-channel angular pressing followed by rolling, Materials Science and Engineering: A, 646 (2015) 154-162.
[23] S.V. Dobatkin, E.N. Bastarache, G. Sakai, T. Fujita, Z. Horita, T.G. Langdon, Grain refinement and superplastic flow in an aluminum alloy processed by high-pressure torsion, Materials Science and Engineering: A, 408 (2005) 141-146.
[24] A. Zangiabadi, M. Kazeminezhad, Computation on new deformation routes of tube channel pressing considering back pressure and friction effects, Computational Materials Science, 59 (2012) 174-181.
[25] M.H. Farshidi, M. Kazeminezhad, H. Miyamoto, Microstructrual evolution of aluminum 6061 alloy through tube channel pressing, Materials Science and Engineering: A, 615 (2014) 139-147.
[26] G. Faraji, M. Mashhadi, A. Bushroa, A. Babaei, TEM analysis and determination of dislocation densities in nanostructured copper tube produced via parallel tubular channel angular pressing process, Materials Science and Engineering: A, 563 (2013) 193-198.
[27] L.S. Toth, C. Gu, Ultrafine-grain metals by severe plastic deformation, Materials Characterization, 92 (2014) 1-14.
[28] J. Li, F. Li, C. Zhao, H. Chen, X. Ma, J. Li, Experimental study on pure copper subjected to different severe plastic deformation modes, Materials Science and Engineering: A, 656 (2016) 142-150.
[29] V. Tavakkoli, M. Afrasiab, G. Faraji, M. Mashhadi, Severe mechanical anisotropy of high-strength ultrafine grained Cu–Zn tubes processed by parallel tubular channel angular pressing (PTCAP), Materials Science and Engineering: A, 625 (2015) 50-55.
[30] C. Chen, Y. Beygelzimer, L.S. Toth, J.-J. Fundenberger, Microstructure and strain in protrusions formed during severe plastic deformation of aluminum, Materials Letters, 159 (2015) 253-256.
[31] K.H. TORABZADEH, G. FARAJI, CYCLIC FLARING AND SINKING (CFS) AS NEW SEVERE PLASTIC DEFORMATION METHOD FOR THIN-WALLED CYLINDRICAL TUBES, (2015).
[32] T. Kvačkaj, A. Kováčová, M. Kvačkaj, R. Kočiško, L. Lityńska-Dobrzyńska, V. Stoyka, M. Miháliková, TEM studies of structure in OFHC copper processed by equal channel angular Rolling, Micron, 43 (2012) 720-724.
[33] B. Mordike, T. Ebert, Magnesium: Properties—applications—potential, Materials Science and Engineering: A, 302 (2001) 37-45.
[34] A. Babaei, M. Mashhadi, Tubular pure copper grain refining by tube cyclic extrusion–compression (TCEC) as a severe plastic deformation technique, Progress in Natural Science: Materials International, 24 (2014) 623-630.
[35] Y. Wang, E. Ma, Strain hardening, strain rate sensitivity, and ductility of nanostructured metals, Materials Science and Engineering: A, 375 (2004) 46-52.
[36] Q. Wei, S. Cheng, K. Ramesh, E. Ma, Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals, Materials Science and Engineering: A, 381 (2004) 71-79.
[37] S.R. Bahadori, K. Dehghani, S.A. Mousavi, Comparison of microstructure and mechanical properties of pure copper processed by twist extrusion and equal channel angular pressing, Materials Letters, 152 (2015) 48-52.
[38] H. Jafarzadeh, K. Abrinia, Fabrication of ultra-fine grained aluminium tubes by RTES technique, Materials Characterization, 102 (2015) 1-8.
[39] H. Jafarzadeh, K. Abrinia, Numerical and experimental analyses of repetitive tube expansion and shrinking processed AZ91 magnesium alloy tubes, Journal of Mechanical Science and Technology, 29 (2015) 733.
[40] H. Jafarzadeh, K. Abrinia, A. Babaei, Retracted: Applicability of Repetitive Tube Expansion and Shrinking (RTES) as a novel SPD method for fabricating UFGed pure copper tubes, in, Elsevier, 2014.