Evaluation of SiO2 Nanoparticles Effects on Seed Germination in Astragalus squarrosus
Subject Areas : Seed Science and TechnologyReyhane Azimi 1 , Gholam Ali Heshmati 2 , Reza Kavandi 3
1 - Faculty of Range Land and Watershed Management Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
2 - University of Agricultural Sciences and Natural Resources, Golestan, Iran
3 - University of Agricultural Sciences and Natural Resources, Golestan, Iran
Keywords:
Abstract :
Azimi, R., Jankju, M., Feizi, H. and Azimi A., 2014. Interaction of SiO2 nanoparticles and seed prechilling on germination and early seedling growth of tall wheatgrass (Agropyron elongatum L.). Polish Jour. Chemical Technology, 16(3): 25-29.
Azimi, R., Feizi, H. and Khajeh Hosseini, M., 2013. Can bulk and nanosized titanium dioxide particles improve seed germination features of wheatgrass (Agropyron desertorum)? In the Natural Scientist Biological, 5(3): 1-7.
Barrena, E., Casals, J., Colon, X., Font, A. and Sanchez, V., 2009. Puntes Evaluation of the ecotoxicity of model nanoparticles Chemosphere, 75: 850–857.
Chen, F. and Bradford, K. J., 2000. Expression of an expansin is associated with endosperm weakening during tomato seed germination, Plant Physiology, 124: 1265–1274.
Dubchak, S., Ogar, A., Mietelski, J. W. and K. Turnau., 2010. Influence of silver and titanium nanoparticles on arbuscular mycorrhiza colonization and accumulation of radiocaesium in Helianthus annuu Span. Jour. Agricultural Research, 8: 103–108.
Feizi, H., Moghaddam, P. R., Shahtahmassebi, N. and Fotovat, A., 2012. Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biol. Trace Elem. Res., 146 (2012), pp. 101–106. (In Persian).
Guo, Z., 2000. Synthesis of the needle-like silica nanoparticles by bio mineral method. Chemical Jour. Chinese Universities, 21(6): 847–848.
Harris, D., 1996. The effects of manure, genotype, seed priming, depth and date of sowing on the emergence and early growth of (Sorghum bicolor L.) Moench in semi-arid Botswana. Soil Tillage Research, 40: 73–88.
Hartmann, H. T., Kester, D. E. and Davies H. T., 1990. Plant propagation: principles and practices. Prentice Hall, Englewood Cliffs, New Jersey, 647 p.
Hu, Y. and Schmidhalter, U., 2005. Drought and salinity: A comparison of their effects on mineral nutrition of plants. Jour. Plant Nutrition Soil Science, 168: 541–549.
ISTA, 2009. ISTA, rules. International Seed Testing Association, Zurich.
Khodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li Z. and Watanabe, F., 2009. Carbon nanotubes are able to penetrate plant seed coat
and dramatically affect seed germination and plant growth. ACS Nano, 3(10): 3221–7.
Khodakovskaya, K., de Silva, D. A., Nedosekin, E., Dervishi, A. S., Biris, E. V., Shashkov, I. G. and Ekaterina, V. P., 2011. Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proceedings of the National Academy of Sciences, 108(3): 1028-33.
Khot, L. R., Sankaran, S., Mari Maja, J., Ehsani, R. and Schuster, E.W., 2012. Applications of nanomaterials in agricultural production and crop protection, A review. Crop Protection, 35: 64–70.
Lee, C. W., Mahendra, S., Zodrow, K., Li, D., Tsai, Y., Braam, J. and Alvarez, P. J. J., 2010a. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environmental Toxicology and Chemistry, 29(3): 669–675.
Lee, S. Mahendra, K. Zodrow, D. Li, Y. C. Tsai, J. Braam, P. J. J., 2010b. Alvarez Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environmental Toxicology and Chemistry, 29: 669–675.
Lee, W. M., An, Y. J., Yoon, H. and Kwbon, H.S., 2008. Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles, Environmental Toxicology and Chemistry, 27: 1915-1921.
Lin, B. S., Diao, S. Q., Li, C. H., Fang, L. J., Qiao, S.C. and Yu, M., 2004. Effects of TMS (nanostructured silicon dioxide) on growth of Changbai Larch seedlings. Jour. for Research CHN, 15: 138–140.
Lu, C. M., Zhang, C. Y., Wu, J. Q. and Tao, M. X., 2002. Research of the effect of nanometer on germination and growth enhancement of Glycine max and its mechanism. Soybean Science, 21: 168-172.
Mahdavi, M. and Jouri, M. H., 2009. Practical identification of rangeland plant species. Publisher Aiij press. (In Persian).
Matthews, S. and Khajeh-Hosseini, M., 2007. Length of the lag period of germination and metabolic repair explain vigor differences in seed lots of maize (Zea mays). Seed Science Technology, 35: 200–212.
Racuciu, M. and Creanga, D., 2007. TMA-OH coated magnetic nanoparticles internalized in vegetal tissue. Romanian Physics, 52: 395–402.
Rogers, L., 2005. Safety fears over “nano” anti-aging cosmetics.
Shah, V. and Belozerova, I., 2009. Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollution, 197: 143–148.
Thakkar, K. N., Snehit S., Mhatre, M. S., Rasesh, Y. and Parikh M.S., 2009. Biological synthesis of metallic nanoparticles. Nanomedicine. Nanotechnology Biology and Medicine, 6(2): 257-262.
Vashisth, A. and Nagarajan, S., 2010. Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. Jour. Plant Physiology, 167: 149-156.
Wang, Z. M., Guo, T. J. and Li, M., 2001. The Nano structure SiO2 in the plants Chin. Sci. Bull, 46: 625–631.