References:
1]
J. King, “A New Approach to Program Testing”, In Proceedings of the International Conference on Reliable Software ACM Press, pp.228-233, 1975.
[2]
J. King, “Symbolic Execution and Program Testing”, Communications of the ACM, Vol.19, Iss.7, pp.385-394, 1976.
[3]
S. Khurshid, C. S. Pasareanu, W. Visser: Generalized symbolic execution for model checking and testing, In Proc. 9th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, pp.553-568, April 2003.
[4]
K. L. McMillan, “Symbolic Model Checking”, Kluwer Academic Publishers, 1993.
[5]
W. Miller, D. Spooner, “Automatic Generation of Floating-Point Test Data”. IEEE Trans. On Software Engineering, Vol.2, No.3, pp.223-226, 1976.
[6]
B. Korel, “Automated Software Test Data Generation”, IEEE Trans. On Software Engineering, Vol.16, No8, pp.870-879,
International Journal of Smart Electrical Engineering, Vol.2, No.3, Summer 2013 ISSN: 2251-9246
157
1990.
[7]
N. Tracey, J. Clark, K. Mander, J. McDermid, “An automated framework for structural test-data generation”, In Proceedings of the International Conference on Automated Software Engineering, pp.285-288, IEEE Computer Society Press, Hawaii, USA, 1998.
[8]
D. Goldberg, “Genetic Algorithms in Search, Optimization and Machine Learning”, Addison-Wesley, 1989.
[9]
M. Mitchell, “An Introduction to Genetic Algorithms”, MIT Press, Cambridge, MA, 1996.
[10]
P. McMinn, “Search-Based Test Data Generation, A survey”, Journal on Software Testing, Verification and Reliability, Vol.14, No.2, pp.105-156, June 2004.
[11]
A. Watkins, “The Automatic Generation of Test Data Using Genetic Algorithms”, In Proceedings of the Fourth Software Quality Conference, pp.300-309, 1995.
[12]
R. Pargas, M. Harrold, and R. Peck, “Test-Data Generation Using Genetic Algorithms”, Software Testing, Verification and Reliability, Vol.9, No.4, pp.263-282, 1999.
[13]
S. Xanthakis, C. Ellis, C. Skourlas, A. Le Gall, S. Katsikas, K. Karapoulios, “Application of Genetic Algorithms to Software Testing”, In 5th International Conference on Software Engineering and its Applications, pp.625-636, Toulouse, France, 1992.
[14]
J. Wegener, A. Baresel, H. Sthamer, “Evolutionary Test Environment for Automatic Structural Testing”, Information and Software Technology, Vol.43, No.14, pp.841-854, 2001.
[15]
M. Sutton, A. Greene, P. Amini, “Fuzzing: Brute Force Vulnerability Discovery”, 2006.
[16]
B. Jones, H. Sthamer, X. Yang, and D. Eyres, “The Automatic Generation of Software Test Data Sets Using Adaptive Search Techniques”, In Proceedings of the 3rd International Conference on Software Quality Management, pp.435-444, Seville, Spain, 1995.
[17]
S. Forrest, S. Hofmeyr, A. Somayaji, “Computer Immunology”, Communications of the ACM, Vol.40, No.10, pp.88-96, 1997.
[18]
J. O. Kephart, G. B. Sorkin,W. C. Arnold, D.M. Chess, G. J. Tesauro, S. R.White, “Biologically Inspired Defences Against Computer Viruses”, Machine Learning and Data Mining: Method and Applications, R. S. (Ed) Michalski, I. Bratko, M. Kubat, John-Wiley & Son, pp.313-334, 1997.
[19]
Jung Won Kim, “Integrating Artificial Immune Algorithms for Intrusion Detection”, PhD Thesis, Department of Computer Science, University College London, July 30, 2002.
[20]
F. Gonzalez, “A Study of Artificial Immune Systems Applied to Anomaly Detection”, PhD Thesis, Division of Computer Science, University of Memphis, Memphis, TN 38152, May 2003.
[21]
J. Timmis, “Artificial Immune Systems: A Novel Data Analysis Technique Inspired by the Immune Network Theory”, PhD Thesis, Department of Computer Science,
University of Wales, Aberystwyth, 2001.
[22]
T. Knight, “MARIA: A Multilayered Unsupervised Machine Learning Algorithm Based on the Vertebrate Immune System”, PhD Thesis, The University of Kent at Canterbury, 2005.
[23]
S. Forrest, A. Perelson, L. Allen, R. Allen, Cherukuri, “Self-nonself Discrimination in a Computer”, In Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy, pp.202-212, Los Alamitos, CA. IEEE Computer Society Press, 1994.
[24]
Z. Ji, D. Dasgupta, “Revisiting Negative Selection Algorithms”, Evolutionary Computation, Vol.15, No,2, pp.223-251, 2007.
[25]
F. Esponda, S. Forrest, P. Helman, “A Formal Framework for Positive and Negative Detection Schemes”, pp.357-373, IEEE Systems, Man, and Cybernetics Society, 2003.
[26]
R. G. Pressman, “Software Engineering, a Practitioner’s approach”, McGraw-Hill, 2005.
[27]
B. Beizer, “Software Testing Techniques”, Second Edition, The Coriolis Group, 1990.
[28]
G. J. Myers, ”The Art of Software Testing”, John Wiley & Sons, 2004.
[29]
L. C. Briand, Y. Labiche, Z. Bawar, “Using Machine Learning to Refine Black-Box Test Specifications and Test Suites”, Technical Report, Carleton University, 2007.
[30]
TriTyp source code,
http://www.irisa.fr/lande/gotlieb/resources/Mutants/trityp.c
[31]
Marick B., “The Craft of Software Testing”, Prentice Hall,1995.