Subcategories of topological algebras
Subject Areas : History and biography
1 - Department of Mathematics, Troy University, Dothan, AL 36304, USA
Keywords:
Abstract :
[1] J. Adamek, H. Herrlich and G. E. Strecker, Abstract and Concrete Categories, John Wiley & Sons, Inc., New York, 1990.
[2] H. L. Bentley, H. Herrlich and R. G. Ori, Zero sets and complete regularity for nearness spaces, In: Categorical Topology, World Scientific, Teaneck, New Jersey (1989), 446-461.
[3] P. M. Cohn, Universal Algebra, Harper and Row, Publishers, New York, 1965.
[4] T. H. Fay, An axiomatic approach to categories of topological algebras, Quaestiones Mathematicae 2 (1977), 113-137.
[5] V. L. Gompa, Essentially algebraic functors and topological algebra, Indian Journal of Mathematics, 35, (1993), 189-195.
[6] H. Herrlich, Essentially algebraic categories, Quaest. Math. 9 (1986), 245-262.
[7] Y. H. Hong, Studies on categories of universal topological algebras, Doctoral Dissertation, McMaster University, 1974.
[8] H. Herrlich and G. E. Strecker, Category Theory, Allyn and Bacon, Boston, 1973.
[9] J. Koslowski, Dual adjunctions and the compatibility of structures, In: Categorical Topology, Heldermann Verlag, Berlin (1984), 308-322.
[10] J. D. Lawson and B. L. Madison, On congruences and cones, Math. Zeit. 120 (1971), 18-24.
[11] L. D. Nel, Universal topological algebra needs closed topological categories, Topology and its Applications 12 (1981) 321-330.
[12] L. D. Nel, Initially structured categories and cartesian closedness, Canad. J. Math. 27 (1975) 1361-1377.
[13] M. Petrich, Lectures in Semigroups, John Wiley & Sons, New York, 1977.
[14] W. Tholen, On Wyler's taut lift theorem, General Topology and its Applications 8 (1978), 197-206.
[15] O. Wyler, On the categories of general topology and topological algebras, Arc. Math. (Basel) 22 (1971), 7-17.