Coupled fixed point theorems involving contractive condition of integral type in generalized metric spaces
Subject Areas : History and biography
1 - Department of Mathematics, University of Peshawar, Peshawar, Pakistan
2 - Department of Mathematics, University of Peshawar, Peshawar, Pakistan
Keywords:
Abstract :
[1] M. Abbas, G. Jungck, Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl. 341 (2008), 416-420.
[2] M. Abbas, B. E. Rhoades, Common fixed point results for noncommuting mapping without continuity in generalized metric spaces, Appl. Math. Comput. 215 (2009), 262-269.
[3] H. Aydi, A fixed point theorem for a contractive condition of integral type involving altering distances, Int. J. Nonlinear Anal. Appl. 3 (1) (2012), 42-53.
[4] T. Abdeljawad, Completion of cone metric spaces, Hacet. J. Math. Stat. 39 (2010), 67-74.
[5] Z. Badehian, M. S. Asgari, Integral type fixed point theorems for $alpha$-admissible mappings satisfying ϕ-contractive inequality, Filomat. 30 (12) (2016), 3227-3234.
[6] I. Beg, M. Abbas, Coincidence point and invariant approximation for mappings satisfying generalized weak contractive condition, Fixed Point Theor. Appl. (2006), Article ID 74503. 7 pages.
[7] T. G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Analysis., 65 (2006), 1379-1393.
[8] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sciences. 29 (9) (2002), 531-536.
[9] L. G. Haung, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332 (2007), 1468-1476.
[10] G. Jungck, Commuting maps and fixed points, Am. Math. Monthly. 83 (1976), 261-263.
[11] G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Sci. 9 (4) (1986), 771 -779.
[12] G. Jungck, Common xed points for commuting and compatible maps on compacta, Proc. Amer. Math. Soc. 103 (1988), 977-983.
[13] G. Jungck, N. Hussain, Compatible maps and invariant approximations, J. Math. Anal. Appl. 325 (2) (2007), 1003-1012.
[14] V. Lakshmikantham, L. Ciric, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Analysis. 70 (2009), 4341-4349.
[15] P. P. Murthy, K. Tas, New common fixed point theorems of Gregus type for R-weakly commuting mappings in 2-metric spaces, Hacet. J. Math. Stat. 38 (2009), 285 -291.
[16] Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2) (2006), 289-297.
[17] R. P. Pant, Common fixed points of noncommuting mappings, J. Math. Anal. Appl. 188 (1994), 436-440.
[18] V. Popa, M. Mocanu, Altering distance and common fixed points under implicit relations, Hacet. J. Math. Stat. 38 (2009), 329-337.
[19] H. Rahimi, P. Vetro, G. Soleimani Rad, Coupled fixed-point results for T-contractions on cone metric spaces with applications, Math. Notes. 98 (1) (2015), 158-167.
[20] H. Rahimi, G. Soleimani Rad, Fixed point theory in various spaces, Lambert Academic Publishing (LAP), Germany, 2012.
[21] R. Shah, A. Zada, Some common fixed point theorems of compatible maps with integral type contraction in G-metric spaces, Proceedings of the Institute of Applied Mathematics. 5 (1) (2106), 64-74.
[22] R. Shah, A. Zada and T. Li, New common coupled fixed point results of integral type contraction in generalized metric spaces, J. Anal. Num. Theor. 4 (2) (2106), 145-152.
[23] W. Shatanawi, Coupled fixed point theorems in generalized metric spaces, Hacet. J. Math. Stat. 40 (3) (2011), 441-447.
[24] A. Zada, R. Shah, T. Li, Integral type contraction and coupled coincidence fixed point theorems for two pairs in g-metric spaces, Hacet. J. Math. Stat. 45 (5) (2016), 1475-1484.