Transformations computations: Power, Roots and Inverse
Subject Areas : Complex AnalysisM. Ghorbanzadeh 1 , H. Kamali 2 , A. Mansoori 3
1 - Department of Basic Science, Imam Reza International University, Mashhad, Iran
2 - Department of Pure Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran
3 - Department of Applied Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran
Keywords:
Abstract :
[1] G. H. Golub, C. F. Van Loan, Matrix computations, JHU Press, 1983.
[2] N. J. Higham, Functions of matrices: theory and computation, SIAM, 2008.
[3] T. Li, Z. Zhang, T. Wang, Determining the structure of the Jordan normal form of a matrix by symbolic computation, Linear Algebra and its Applications. 252 (1-3) (1997), 221-259.
[4] J. M. Ortega, Matrix theory: A second course, Springer Science & Business Media, 2013.
[5] J. J. Palis, W. De Melo, Geometric theory of dynamical systems: an introduction, Springer Science & Business Media, 2012.
[6] R. Penrose, A generalized inverse for matrices, Math. Proc. Camb. Philos. Soc. 51 (3) (1955), 406-413.
[7] W. Rudin, Functional Analysis, Internat. Ser. Pure. Appl. Math., 1991.
[8] E. Suli, D. F. Mayers, An introduction to numerical analysis, Cambridge University Press, 2003.
[9] M. Tomas-Rodriguez, S. P. Banks, Linear time-varying approximations to nonlinear dynamical systems: with applications in control and optimization, Springer Science & Business Media, 2010.
[10] J. H. Van Lint, R. M. Wilson, A course in combinatorics, Cambridge University Press, 2001.