A certain studies on Norlund summability of series
Subject Areas : Sequences, series, summability
1 - Department of Mathematics, MIT Campus, T.U. Janakpurdham, Nepal|Department of Mathematics, Rajarshi Janak Campus, T.U, Janakpurdham, 45600, Nepal
2 - Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology (VIT) University, Vellore, 632 014 Tamil Nadu, India
Keywords:
Abstract :
[1] N. H. Abel, Undersuchungen über die rein 1 + mx m(m+1)/1.2x^2 + ..., Journal Für Die Reine und Angewandte Mathematik. (Crelles) L. (1826), 311-339.
[2] I. Canak, U. Totur, An alternative proof of a Tauberian theorem for Abel summability method, Proyecciones J. Math. 35 (3) (2016), 235-244.
[3] E. Cesàro, Surla multiplication des series, Bulletin des Scinces Math. 14 (1890), 114-120.
[4] M. Fekete, Vizgalatok a Fourier Souokroe, Mathematics Termesz Ertesitok. 34 (1916), 756-786.
[5] H. J. Hamilton, J. D. Hill, On strong summability, Amer. Math. J. 60 (1938), 588-594.
[6] G. H. Hardy, Divergent Series, The University Press, Oxford, 1949.
[7] G. H. Hardy, J. E. Littlewood, Sur La series de Fourier dune function a Eorre summable computes, Rendus del Academic Des Science. 156 (1913), 1307-1309.
[8] G. H. Hardy, J. E. Littlewood, The strong summability of Fourier series, Found. Math. 25 (1935), 162-189.
[9] E. W. Hobson, The Theory of the Function of a Real Variable and the Theory of Fourier Series, Cambridge, 1950.
[10] J. M. Hyslop, Note on the strong summability of series, Proc. Glasgow. Math. Assoc. 1 (1952), 16-20.
[11] E. Kogbetliantz, On the absolutely summable series by the method of arithmetical means, Bulletin des Sciences Math. 49 (2) (1925), 234-256.
[12] G. G. Lorentz, A contribution to the theory of divergent series, Acta. Math. 80 (1948), 167-190.
[13] G. G. Lorentz, K. Zeller, Strong and ordinary summability, Tohoku. Math. J. 15 (4) (1963), 315-321.
[14] S. M. Mazhar, A. H. Siddiqui, On the almost summability of a trigonometrical sequence, Acta. Math. Acad. Sci. Hung. 20 (1969), 21-24.
[15] L. McFadden, Absolute N¨ olund summability, Duke. Math. J. 9 (1942), 168-207.
[16] V. N. Mishra, Some Problems on Approximations of Functions in Banach Spaces, Ph.D. Thesis, IndianInstitute of Technology Uttarakhand, India, 2007.
[17] V. N. Mishra, K. Khatri, L. N. Mishra, Approximation of functions belonging to Lip (ξ(t),t) class by
(N,p n )(E,q) summability of Conjugate series of Fourier series, J. Inequal. Appl. (2012), 2012:296.
[18] V. N. Mishra, K. Khatri, L. N. Mishra, Deepmala, On the trigonometric approximation of signals belonging to generalized weighted Lipschitz W(L r ,ξ(t))(r ⩾ 1) class by matrix (C 1 .N p ) operator of conjugate series of its Fourier series, Appl. Math. Comput. 237 (2014), 252-263.
[19] V. N. Mishra, K. Khatri, L. N. Mishra, Deepmala, Trigonometric approximation of periodic Signals belonging to generalized weighted Lipschitz W ′ (L r ,ξ(t)),(r ⩾ 1)− class by Norlund-Euler (N,pn)(E,q) operator of conjugate series of its Fourier series, J. Classical. Anal. 5 (2) (2014), 91-105.
[20] V. N. Mishra, L. N. Mishra, Trigonometric Approximation of Signals (Functions) in L-p norm, Inter. J. Contemp. Math. Sci. (7) (19) (2012), 909-918.
[21] M. L. Mittal, R. Kumar, A note on strong Nörlund summability, J. Math. Anal. Appl. 199 (1996), 312-322.
[22] M. L. Mittal, U. Singh, V. N. Mishra, On the strong N¨ orlund summability of conjugate Fourier series, Appl. Math. Comput. 187 (2007), 326-331.
[23] N. E. Norlund, “Sur une application des functions permutables”, Lunds Universitets Arsskrift. 2 (16) (1919), 1-10.
[24] T. Pati, A generalization of theorem of Iyenger on the harmonic summability of Fourier series, Indian J. Math. 3 (1961), 85-90.
[25] J. A. Siddiqi, On the harmonic summability of Fourier series, Proc. Indian. Acad. Sci. 28 (1948), 527-531.
[26] O. Szasz, Introduction to the Theory of Divergent Series, University of Cincinnati, 1946.
[27] O. Szasz, Introduction to the Theory of Divergent Series, University of Cincinnati, Revised Edition, 1952.
[28] E. C. Titchmarsh, The Theory of Functions, Second edition, Oxford University press, 1939.
[29] G. F. Woronoi, Extensin of the notion of the limit of the sum of terms of an infinite series (in Russian), Processing of Eleventh Congress of Russian Naturalist and Physicians, St. Petersburg,1902, 60-61. Annotated English translation by Tamarkin, J. D., Annals of Mathematics. 33 (2) (1932), 422-428.
[30] K. Zeller, Thearie der Limitierungseverfahren, Ergebnisse der Mathematik und ihre Grenzgebiete, Springer-Verlag, Berlin, 1958.