Basis extension and construction of tight frames
Subject Areas : Functional analysis
1 - Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar, India
Keywords:
Abstract :
[1] B. G. Bodmann, H. J. Elwood, Complex equiangular parseval frames and Seidel matrices containing pth roots of unity, Proc. Amer. Math. Soc. 138 (12) (2010), 4387-4404.
[2] B. G. Bodmann, V. I. Paulsen, M. Tomforde, Equiangular tight frames from complex Seidel matrices containing cube roots of unity, Linear Algebra Appl. 430 (1) (2009), 396-417.
[3] H. Bolcskei, F. Hlawatsch, H. G. Feichtinger, Frame-theoretic analysis of oversampled filter banks, IEEE Trans. Signal. Process. 46 (12) (1998), 3256-3268.
[4] J. Cahill, M. Fickus, D. G. Mixon, M. J. Pottet, N. K. Strawn, Constructing finite frames of a given spectrum and set of lengths, Appl. Comput. Harmon. Anal. 35 (1) (2013), 52-73.
[5] E. J. Candes, D. L. Donoho, New tight frames of curvelets and optimal representations of objects with piecewise C2singularities, Commun. Pure Appl. Math. 57 (2) (2004), 219-266.
[6] P. G. Casazza, M. Fickus, J. Kovacevic, M. T. Leon, J. C. Tremain, A Physical Interpretation of Tight Frames, Harmonic Analysis and Applications, 2006.
[7] P. G.Casazza, M. T. Leon, Existence and construction of finite frames with a given frame operator, Inter. J. Pure. Appl. Math. 63 (2) (2010), 149-157.
[8] O. Christensen, S. Datta, R. Y. Kim, Equiangular frames and generalizations of the Welch bound to dual pairs of frames, Linear. Multil. Algebra. 68 (12) (2020), 2495-2505.
[9] N. Cotfas, J. P. Gazeau, Finite tight frames and some applications, J. Physics A. Math. Theor. 43 (2010), 19:193001.
[10] S. Datta, J. Oldroyd, Construction of k-angle tight frames, Numer. Funct. Anal. Optim. 37(8) (2016), 975-989.
[11] S. Datta, J. Oldroyd, Low coherence unit norm tight frames, Linear. Multi. Algebra. 67 (6) (2019), 1174-1189.
[12] I. Daubechies, A. Grossmann, Y. Meyer, Painless non orthogonal expansions, J. Math. Phys. 27 (1986), 1271-1283.
[13] R. J. Duffin, A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366.
[14] M. Egan, Properties of tight frames that are regular schemes, Crypt. Communi. 12 (3) (2020), 499-510.
[15] Y. C. Eldar, Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame vectors, J. Fourier. Anal. Appl. 9 (1) (2003), 77-96.
[16] Y. C. Eldar, T. Werther, General framework for consistent sampling in Hilbert spaces, Int. J. Walvelets Multi. Inf. Process. 3 (3) (2005), 347-359.
[17] D. J. Feng, L. Wang and Y. Wang, Generation of finite tight frames by Householder transformations, Adv. Comput. Math. 24 (1) (2006), 297-309.
[18] P. J. S. G. Ferreira, Mathematics for Multimedia Signal Processing II Discrete Finite Frames and Signal Reconstruction, Signals Processing for Multimedia, 1999.
[19] M. Fickus, D. G. Mixon and J. C. Tremain, Steiner equiangular tight frames, Linear Algebra Appl. 436 (5) (2012), 1014-1027.
[20] F. Gobel, G. Blanchard, U. Luxburg, Construction of Tight Frames on Graphs and Application to Denoising, Handbook of Big Data Analytics, Springer, 2018.
[21] V. K. Goyal, J. Kovasevic, J. A. Kelner, Quantized frame expansions with erasures, J. Appl. Comput. Harmon. Anal. 10 (3) (2001), 203-233.
[22] R. Holmes, V. Paulsen, Optimal frames for erasures, Linear Algebra Appl. 377 (2004), 31-51.
[23] T. Strohmer, R. Jr. Heath, Grassmanian frames with applications to coding and communications, Appl. Comput. Harmon. Anal. 14 (2003), 257-275.
[24] S. Waldron, Generalized Welch bound equality sequences are tight frames, IEEE Trans. Inform. Theory. 49 (9) (2003), 2307-2309.