Numerical solution of Fredholm integral-differential equations on unbounded domain
Subject Areas : Differential and Integral equations
1 - Department of Mathematics, University of Mazandaran, Babolsar,
PO. Code 47416-95447, Iran
2 - Department of Mathematics, Islamic Azad University, Chalus Branch,
PO. Code 46615-397, Iran
Keywords:
Abstract :
[1] A. D. Polyanin, A. V. Manzhirov, Handbook of integral equations, Boca Raton, Fla., CRC Press, 1998.
[2] D. G. Sanikidze, On the numerical solution of a class of singular integral equations on an infinite interval, Differential Equations. 41(9) (2005), pp. 1353–1358.
[3] N. I. Muskhelishvili, Singular integral equations, Noordhoff, Holland, 1953.
[4] V. Volterra, Theory of functionnals of integro-differential equations, Dover, New York, 1959.
[5] F. M. Maalek Ghaini, F. Tavassoli Kajani, and M. Ghasemi, Solving boundary integral equation using Laguerre polynomials, World Applied Sciences Journal. 7(1) (2009), pp. 102–104.
[6] N. M. A. Nik Long, Z. K. Eshkuvatov, M. Yaghobifar, and M. Hasan, Numerical solution of infinite boundary integral equation by using Galerkin method with Laguerre polynomials, World Academy of Science, Engineering and Technology. 47 (2008), pp. 334–337.
[7] D. Funaro, Approximations of Differential Equations, Springer-Verlag, 1992.
[8] J. Shen, T. Tang, and L. L. Wang, Spectral Methods Algorithms, Analysis and Applications, Springer, 2011.
[9] J. Shen, L. L. Wang, Some Recent Advances on Spectral Methods for Unbounded Domains, J. Commun. Comput. Phys. 5 (2009), pp. 195–241.