References:
[1] Amirfakhrian M., Firouzdor R., Mollaramezani Z., Zero B-Spline Approximation Method for Functional Integral Equations, Advances in Applied Phisics and Materials Science Congress, Antalya(Turkey), Appl.Math, (2011), 12-15.
[2] Arndt H., Numerical solution of retarded initial value problems: local and global error and stepsize control, Numer. Math., 43(1984), 343-360.
[3] Delves L.M. and Mohammed J.L., Computational Methods For Integral Equations, Cambridge University Press, Cambridge, (1985).
[4] El-Gendi S.E., Chebyshev solution of a class of functional equations, Comp. Society of India, Math. Appl., 8(1971), 271-307.
[5] Fox L., Mayers D.F., Ockendon J.R. and Taylor A.B., Ona functional dierential equation, J. Inst. Math. Appl., 8(1971), 271-307.
[6] Maleknejad K. and Derili H., Numerical Solution of Integral Equations by Using Combination of Spline-Collocation Method and Lagrange Interpolation, Applied Mathematics and Computation.
[7] Rashed M.T., Numerical solution of functional dierential, integral and integro-differential equations, Applied Mathematics and Computation, 156(2004), 485-492.
[8] Rashed M.T., An Expansion Method To Treat Integral Equations, Applied Mathematics and Computation, 135(2003), 73-79.
[9] Stoer J.and Bulirsch R., Introduction to the Numerical Analysis, Springer-Verlag, (2002).
[10] Schumaker L.L., Spline Functions:Basic Theory, John Wiley, New York, (1981).
[11] Zennaro M., Natural continuous extension of Runge-Kutta methods, Math. Comput., 46(1986), 119-133.