FIXED POINT THEOREM OF KANNAN-TYPE MAPPINGS IN GENERALIZED FUZZY METRIC SPACES
Subject Areas : International Journal of Mathematical Modelling & Computations
1 - Bu-Ali Sina university
Iran, Islamic Republic of
Keywords:
Abstract :
Binayak S. Choudhury and Kirshnapada Das, Fixed point of generalized Kannan-type mappings in generalized menger spaces, Commun. Korean. Math. Soc., 24 (2009), No. 4,529-537.
A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen 57(2000), no. 1-2, 31-37. Kaleva[3] R. Chugh and S. Kumar, Weakly compatible maps in generalized fuzzy metric spaces, J. Analysis. 10 (2002) 65-74.
Pratulanada Das and Lakshmi Kanta Dey, A fixed point theorem in generalized metric spaces, Soochow Journal of mathematics, No., 1 (2007) 33-39.
Z. K. Deng, Fuzzy pseudo-metric spaces, J. Math. Anal. Appl., 86 (1982) 74-95.
C. Dibari and C. Vetro, Fixed points, attractors and weak fuzzy contractive mappings in a fuzzy metric space, J. Fuzzy Math. 13(2005) 973-982.
A. George and P. Veeramani, On some results in metric spaces, Fuzzy Set and System., 64 (1994) 395-399.
M. Grabiec, Fixed point in fuzzy metric spaces, Fuzzy Set and System., 27 (1988) 385-389.
R. Kannan, Some result on fixed points, Bull. Calcutta Math. Soc., 60 (1968) 71-76.
I. Kramosil and J. Michalek, Fuzzy metrics and statistical metric spaces, Kybernetika. 11 (1975) 336-344.
K. Menger, Statistical metrics, Proc. Nat. Acad. Sci. U.S.A. 28 (1942), 535-537.
P. V. Subrahmanyam, Completeness and xed points, Monatsh, Math. 80(1975) 325-330.
L. A. Zadeh, Fuzzy sets, Inform and Control, 8(1965) 338-353.