References:
E. Beltrami, T.O. Carroll, Modelling the role of viral diseases in recurrent phytoplankton blooms, J.
Math. Biol. 32 (1994) 857-863.
J. Chattopadhyay, R.R. Sarkar, S. Mandal, Toxin-producing plankton may act as a biological control
for planktonic blooms-field study and mathematical modelling, J. Theor. Biol. 215 (2002) 333-344.
J. Chattopadhyay, R.R. Sarkar, A. El Abdllaoui, A delay differential equation model on harmful algal
blooms in the presence of toxic substances, IMA J. Math. Appl. Med. Biol. 19, (2002) 137-161.
S. Roy, S. Alam, J. Chattopadhyay, Competitive effects of toxin-producing phytoplankton on overall
plankton populations in the Bay of Bengal, Bull. Math. Biol. 68(8) 2006 2303-2320.
S. Roy, S. Bhattacharya, P. Das, J. Chattopadhyay, Interaction among non-toxic phytoplankton, toxic
phytoplankton and zooplankton inferences from field observations, J. Biol. Phys. 33(1) (2007) 1-17.
D.A., Siegel, Jr.D.J. McGillicuddy, E.A. Fields, Mesoscale eddies, satellite altimetry and new produc-
tion in the Sargasso sea, J. Geophys. Res. 104, (1999) 13359-13379.
L. Matthews, J. Brindley, Patchiness in plankton populations, Dyn. Stab. Syst. 12 (1997) 39-59.
J.W. Pitchford, J. Brindley, Prey patchiness, predator survival and fish recruitment, Bull. Math. Biol.
(2007) 527-546.
S. Roy, Spatial interaction among nontoxic phytoplankton, toxic phytoplankton, and zooplankton:
emergence in space and time, J. Biol. Phys. 34, (2008) 459-474.
B. Mukhopadhyay, R. Bhattacharyya, Modelling phytoplankton allelopathy in a nutrient-plankton
model with spatial heterogeneity, Ecological modelling 198 (2006) 163-173.
C. Tiana, L. Zhang, Z. guilin, Pattern formation for a model of plankton allelopathy with cross-
diffusion, Journal of the Franklin Institute 348 (2011) 1947-1964.
B.D. Hassard, N.D. Kazarinoff, Y.H. Wan., Theory and Applications of Hopf bifurcation, Cambridge,
Cambridge University Press, 1981.
S. Pal, S. Chatterjee, J. Chattopadhyay, Role of toxin and nutrient for the occurrence and termination
of plankton bloom-results drawn from field observations and a mathematical model, J. Biosystem
(2007) 87-100.
S. Chakarborty, S. Roy, J. Chattopadhyay, Nutrient-limiting toxin producing and the dynamics of
two phytoplankton in culture media: A mathematical model, J. Ecological Modelling 213 (2) (2008)
-201.
R. R. Sarkar, J. Chattopadhyay, Occurence of planktonic blooms under environmental fluctuations
and its possible control mechanism-mathematical models and experimental observations, J.Theor.
Biol. 224 (2003) 501-516.
J. Ives, Possible mechanism underlying copepod grazing responses to levels of toxicity in red tide
dinoflagellates, J. Exp. Mar. Biol. Ecol. 112 (1987) 131-145.
E. Buskey, C. Hyatt, Effects of Texas (USA) brown tide alga on planktonic grazers, Mar. Ecol. Prog.
Ser. 126 (1995) 285-292.
A. Sharma, A. K. Sharma, K. Agnihotri, The dynamic of plankton-nutrient interaction with discrete
delay, Applied Mathematics and Computation, 231 (2014) 503-515.
K. Das, S. Ray, Effect of delay on nutrient cycling in phytoplankton-zooplankton interactions in
estuarine system, Ecol. model. 215 (2008) 69-76.
N.K. Thakur, R.K. Upadhyay, S.N. Raw, Instabilities and Patterns in Zooplankton-Phytoplankton
Dynamics: Effect of Spatial Heterogeneity, ICMMSC, 283 (2012)229-236.