A NOTE ON "A SIXTH ORDER METHOD FOR SOLVING NONLINEAR EQUATIONS"
Subject Areas : International Journal of Mathematical Modelling & ComputationsParia Assari 1 , Taher Lotfi 2
1 - ORCID iD Islamic Azad University, Hamedan Branch
Iran, Islamic Republic of
2 - Islamic Azad University, Hamedan Branch
Iran, Islamic Republic of
Keywords:
Abstract :
Cordero. A, Lotfi. T, Bakhtiari. P and Torregrosa. J. R, An efficient two-parametric family with memory for nonlinear equations, Numer Algor. DOI 10.1007/s11075-014-9846-8.
Cordero. A, Lotfi. T, Mahdiani. K and Torregrosa. J. R, Two optimal general classes of iterative methods with eighth-Order, Acta Appl Math. DOI 10.1007/s10440-014-9869-0.
Cordero. A, Lotfi. T, Torregrosa. J. R, Assari. P and Mahdiani. K, Some new bi-accelerator two-point methods for solving nonlinear equations, Comp. Appl. Math. DOI 10.1007/s40314-014-0192-1.
Kung. H.T and Traub. J. F, Optimal order of one-point and multipoint iteration, J. Assoc. Comput. Math. 21 (1974) 634-651.
Lotfi. T and Assari. P, A new calss of two step methods with memory for solving nonlinear equation with high efficiency index, International Journal of Mathematical Modelling and Computations. 4 (2014) 277-288.
Lotfi. T, Magrenan. A. A, Mahdiani. K and Rainer. J. J, A variant of Steffensen–King’s type family with accelerated sixth-order convergence and high efficiency index: Dynamic study and approach, Applied Mathematics and Computation. 252 (2015) 347–353.
Lotfi. T, Soleymani. F, Shateyi. S, Assari. P and Khaksar Haghani. F, New mono- and biaccelerator iterative methods with memory for nonlinear equations, Abstract and Applied Analysis. Volume 2014, Article ID 705674, 8 pages.
Lotfi. T and Tavakoli. E, On construction a new efficient Steffensen-like iterative class by applying a suitable self-accelerator parameter.
Mirzaee. F and Hamzeh. A, A sixth order method for solving nonlinear equations, International Journal of
Mathematical Modelling and Computations. 4 (2014) 55-60.
Ostrowski. A. M, Solution of Equations and Systems of Equations, Academic Press, New York, 1960.
Traub. J. F, Iterative Methods for the Solution of Equations, Prentice Hall, New York, 1964.
Weerakoon. S and Fernando. T. G. I, A variant of Newton's method with accelerated third-order convergence, J. Appl. Math. Lett. 13 (8) (2000) 87-93.