Comparison of the effect of phenanthrene and pyrene on germination, seedling growth and antioxidant enzymes activity on wheat (Triticum aestivum L.)
Subject Areas : Journal of Plant EcophysiologyAyyoub Sobhani 1 , Seyed Yahya Salehi Lisar 2 , Ali Movafeghi 3
1 - Department of Plant Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
2 - Plant science - Natural science- Tabriz university- Tabriz
3 - Department of Plant Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
Keywords: Wheat, Oxidative stress, Polycyclic Aromatic Hydrocarbones, Physiological effects,
Abstract :
The aim of this study was to evaluate the effects of phenanthrene and pyrene as two polycyclic aromatic hydrocarbon on germination, growth and some biochemical indices in bread wheat seedlings. Wheat seedlings were cultivated hydroponically and treated by 50, 100, 150 and 200 µM of phenanthrene and pyrene for 7 days. Activity of the superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), as well as H2O2, MDA and photosynthetic pigments content, were measured. The results showed that both pollutants reduced germination percentage, so that the lowest germination percentage was phenanthrene (54.44%) at 200 μm. Phenanthrene more than pyrene reduced the content of photosynthetic pigmentation, the lowest percentage of chlorophyll a (51.54%), chlorophyll b (48.25%) and carotenoids (63.42%) were related to phenanthrene treatment (200 μM). Both pollutants significantly increased the content of hydrogen peroxide (7 times) and malondialdehyde (1.5 times). Increasing the concentration of both pollutants resulted in a significant decrease (up to 70%) in the activity of the three APX, POD and SOD enzymes, but only phenanthrene significantly reduced (49.12%) activity of the catalase. These results indicated that induction of oxidative stress is one of the main reasons for lower plant growth rate and other harmful outcomes in PAHs contaminated environments.
صابونچی محمدی، ف.، صالحی لیسار س.ی. و مسن هرزندی، ا. (1393). اثرات فیزیولوژیک تنش ناشی از سمیت فنانترن در گیاه گندم رویش یافته در خاکهایی با بافت متفاوت. مجله فیزیولوژی تنش گیاهان. جلد 1: 10-1.
علایی، ا.، وکیلی، ف. و مهردادشریف، ا.ع. (1389). گیاهپالایی خاکهای آلوده به "فنانترن" با استفاده از گیاه سورگوم. محیط شناسی. شماره 53: 88-79.
Agravante, M. D. (ed.) 1985. General Botany laboratory manual and workbook, Manila, Philippines: REX Book Store. 77 p.
Arnon, D. I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol, 24, 1.
Baud-Grasset, F., Baud-Grasset, S. and Safferman, S. I. 1993. Evaluation of the bioremediation of a contaminated soil with phytotoxicity tests. Chemosphere, 26, 1365-1374.
Boominathan, R. and Doran, P. M. 2002. Ni‐induced oxidative stress in roots of the Ni hyperaccumulator, Alyssum bertolonii. New Phytol, 156, 205-215.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72, 248-254.
Branquinho, C., Brown, D. H. and Catarino, F. 1997. The cellular location of Cu in lichens and its effects on membrane integrity and chlorophyll fluorescence. Environ Exp Bot, 38, 165-179.
Chance, B. and Maehly, A. 1955. [136] Assay of catalases and peroxidases. Method Enzymol, 2, 764-775.
Chauhan, A., Oakeshott, J. G. and Jain, R. K. 2008. Bacterial metabolism of polycyclic aromatic hydrocarbons: strategies for bioremediation. Indian J. Microbiol, 48, 95-113.
Chiang, P., Li, K.-P. and Hseu, T.-M. 1996. Spectrochemical behavior of carcinogenic polycyclic aromatic hydrocarbons in biological systems. Part II: A theoretical rate model for BaP metabolism in living cells. Appl Spectros, 50, 1352-1359.
Debiane, D., Garçon, G., Verdin, A., Fontaine, J., Durand, R., Grandmougin-Ferjani, A., Shirali, P. and Sahraoui, A. L.-H. 2008. In vitro evaluation of the oxidative stress and genotoxic potentials of anthracene on mycorrhizal chicory roots. Environ Exp Bot, 64, 120-127.
Gao, Y. and Zhu, L. 2004. Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils. Chemosphere, 55, 1169-1178.
Gong, Z., Alef, K., Wilke, B.-M. and Li, P. 2007. Activated carbon adsorption of PAHs from vegetable oil used in soil remediation. J. Hazard Mater, 143, 372-378.
Gunes, A., Pilbeam, D. J. and Inal, A. 2009. Effect of arsenic–phosphorus interaction on arsenic-induced oxidative stress in chickpea plants. Plant Soil, 314, 211-220.
Harinasut, P., Poonsopa, D., Roengmongkol, K. and Charoensataporn, R. 2003. Salinity effects on antioxidant enzymes in mulberry cultivar. Sci. Asia, 29.
Kang, F., Chen, D., Gao, Y. and Zhang, Y. 2010. Distribution of polycyclic aromatic hydrocarbons in subcellular root tissues of ryegrass (Lolium multiflorum Lam.). BMC Plant Biology, 10, 210.
Kuhn, A., Ballach, H.-J. and Wittig, R. 2004. Studies in the biodegradation of 5 PAHs (Phenanthrene, pyrene, fluoranthene, chrysene und benzo (a) pyrene) in the presence of rooted poplar cuttings. Environ Sci Pollut Res, 11, 22-32.
Kummerova, M., Gloser, J., Slovák, L. and Holoubek, I. 1996. Project Tocoen. The fate of selected organic compounds in the environment. The growth response of maize to increasing concentrations of fluoranthene. Toxicol Environ Chem, 54, 99-106.
Kummerova, M., Slovak, L. and Holoubek, I. 1997. Growth response of spring barley to short-or long-period exposures to fluoranthene. Rost Vyroba (Czech Republic).
Kummerova, M., Zezulka, S., Vanova, L. and Fiserova, H. 2012. Effect of organic pollutant treatment on the growth of pea and maize seedlings. Open Life Sci, 7, 159-166.
Liu, H., Weisman, D., Ye, Y.-B., Cui, B., Huang, Y.-H., Colón-Carmona, A. and Wang, Z.-H. 2009. An oxidative stress response to polycyclic aromatic hydrocarbon exposure is rapid and complex in Arabidopsis thaliana. Plant Sci, 176, 375-382.
Lundstedt, S. 2003. Analysis of PAHs and their transformations products in contaminated soil and remedial processes. (Doctoral dissertation, Kemi).
Maila, M. P. and Cloete, T. E. 2002. Germination of Lepidium sativum as a method to evaluate polycyclic aromatic hydrocarbons (PAHs) removal from contaminated soil. Int Biodeter Biodegr, 50, 107-113.
Muratova, A. Y., Kapitonova, V. V., Chernyshova, M. P. and Turkovskaya, O. V. 2009. Enzymatic activity of alfalfa in a phenanthrene-contaminated environment. World Acad Sci Eng Technol, 58, 569-574.
Obinger, C., Maj, M., Nicholls, P. and Loewen, P. 1997. Activity, Peroxide Compound Formation, and Heme d Synthesis inEscherichia coliHPII Catalase. Arch Biochem Biophys, 342, 58-67.
Reynoso-Cuevas, L., Gallegos-Martínez, M., Cruz-Sosa, F. and Gutiérrez-Rojas, M. 2008. In vitro evaluation of germination and growth of five plant species on medium supplemented with hydrocarbons associated with contaminated soils. Bioresource technol, 99, 6379-6385.
Salehi-Lisar, S. Y. and Deljoo, S. 2015a. Physiological effect of phenanthrene on Triticum aestivum, Helianthus annus and Medicago sativa. EurAsian J Bio Sci, 9, 29-37.
Tomar, R. S. and Jajoo, A. 2013. A quick investigation of the detrimental effects of environmental pollutant polycyclic aromatic hydrocarbon fluoranthene on the photosynthetic efficiency of wheat (Triticum aestivum L.). Ecotoxicology, 22, 1313-1318.
Tomar, R. S. and Jajoo, A. 2014. Fluoranthene, a polycyclic aromatic hydrocarbon, inhibits light as well as dark reactions of photosynthesis in wheat (Triticum aestivum L.). Ecotox environ safe, 109, 110-115.
Wild, S. R. and Jones, K. C. 1995. Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source inventory and budget. Environ pollut, 88, 91-108.
Wilson, S. C. and Jones, K. C. 1993. Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environ pollut, 81, 229-249.
Winterbourn, C. C., Mcgrath, B. M. and Carrell, R. W. 1976. Reactions involving superoxide and normal and unstable haemoglobins. Biochem J, 155, 493-502.
_||_