The reaction of six medicinal plant species with arbuscular mycorrhizal fungi during spring and autumn in Noujian Watershed (Lorestan province)
Subject Areas : Journal of Plant EcophysiologyParvin Ramak 1 , Mohammad Matinizadeh 2 , Mohammad Mehrnia 3 , Reza Siahmansour 4
1 - Assistant Professor, Research Division of Natural Resources, Lorestan Agricultural and Natural Resources Research and Education Center, AREEO, Khorramabad, Iran
2 - Associate Professor, Forest Research Division, Research Institute of Forests and Rangelands, AREEO,Tehran, Iran
3 - Assistant Professor, Research Division of Natural Resources, Lorestan Agricultural and Natural Resources Research and Education Center, AREEO, Khorramabad, Iran
4 - Assistant Professor, Research Division of Natural Resources, Lorestan Agricultural and Natural Resources Research and Education Center, AREEO, Khorramabad, Iran
Keywords: Medicinal Plants, Colonization, Mycorrhizal fungi, Spore, Noujian,
Abstract :
In this research, symbiosis between arbuscular mycorrhizal fungi and some of the medicinal plants such as: Artemisa aucheri, Mentha longifolia, Plantago lanceolata, Thymus kotschyanus, Ziziphora clinopodioides and Cychorium intybus were studied during the spring and autumn period for two years in Nojian Watershed. Noujian with the area of 34000 hectares is situated between the Eastern latitude of 48° 23̕ to 48° 40̕ and its Northern longitude ranges from 33° 17̕ to 33° 60̕ at Lorestan province in watershed of Dez dam. Soil and thin roots collected randomly from the depth of 0-30 cm of plant canopy area. Significant difference (p> 0.01) was found in phosphorus, potassium, nitrogen, magnesium and organic matter in spring and autumn. Potassium, nitrogen and phosphorus showed significant negative correlation with arbuscular mycorrhiza fungi spore density and percentage colonization but magnesium was positively correlated with spore density and percentage colonization respectively; +0.61 and +0.48. Thymus kotschyanus showed the highest percentage root colonization and the highest number of spores were observed in rhizosphere of Ziziphora clinopodioides. The highest root colonization and spore numbers were observed in spring. Six species of Glomus genus contain G. microcarpum, G. etunicatum, G.macrocarpum, G. constrictum and G. geosporum were identified in the rhizosphere of selected medicinal plant species.
جعفری حقیقی، م. 1382. روش های تجزیه خاک؛ نمونه برداری و تجزیههای مهم فیزیکی و شیمیایی با تأکید بر اصول تئوری و کاربردی. انتشارات ندای ضحی. 236 صفحه.
خانپور،ن.، زارع مایوان،ح. و ف. قناتی. 138. پراکنش گیاهان دارویی و وضعیت میکوریزی آنها در پناهگاه حیات وحش موته (استان اصفهان). پژوهش و سازندگی در منابع طبیعی. شماره 78: 138-129.
زرین کفش، م. 1372. خاکشناسی کاربردی. انتشارات دانشگاه تهران. 247 صفحه.
فیضی کمره، توران.، متینی زاده، م.، شیروانی، ا.، اعتماد، و م. خوشنویس.1390. میکوریز آربسکولار در کیکم در دو فصل بهار و پاییز و ارتباط آن با برخی عناصر غذایی ضروری. مجله جنگل ایران. جلد 3، شماره 3: 221-213.
مهرنیا، محمد و پروین رامک. 1393. بررسی فلورستیک حوزه آبخیز نوژیان. مجله زیست شناسی گیاهی ایران. جلد 6، شماره 20: 113-136.
میرزایی، ج. 1393. تأثیر قارچهای Glomus mosseae، G. intraradices و Gigaspora gigantea بر رشد و جذب عناصر غذایی در نهالهای ارغوان. زیست شناسی گیاهی ایران. جلد 6، شماره 21: 143-155
Aliasgharzadeh, N., N. Saleh Rastin, H. Towfighi and A. Alizadeh. 2001. Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz. Plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza 11: 119-122.
Bender, S. F., F. Conen and G. A. Van der Heijden. 2015. Mycorrhizal effects on nutrient cycling, nutrient leaching and N2O production in experimental grassland. Soil. Biol. Biochem. 80: 282–292.
Bohrer, K. E., F. Carl, J. Friese and P. Amon. 2004. Seasonal dynamics of arbuscular mycorrhizal fungi in differing wetland habitats. Mycorrhiza 14: 329-337.
Charpentier, M., J. Sun., J. Wen., K. S. Mysore and Oldroyd, G. E. D. 2014. Abscisic Acid Promotion of Arbuscular Mycorrhizal Colonization Requires a Component of the PROTEIN PHOSPHATASE 2A Complex. Plant Physiol 166: 2077–2090.
Classen, A. T., M. K. Sundqvist., J. A. Henning., G. S. Newman., J. A. M. Moore., M. A. Cregger and L. C. Moorhead. 2015. Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead? Ecosphere 6(8): 233-245.
Degens, B. P., G. P. Sparling and L. K. Abbott. 1996. Increasing the length of hyphae in a sandy soil increases the amount of water-stable aggregates. Appl. Soil. Ecol. 3:149-159.
Fellbaum, C. R., J. Mensah, A. Cloos, P. Pfeffer, G. Strahan, E. T. Kiers and H. B¨ucking. 2014. Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. New. Phytol. 2:646–656.
Fritz M., I. Jakobsen, M. F. Langkjaer, H. Thordal-Christensen and J. Pons-Kühnemann. 2006. Arbuscular mycorrhiza reduces susceptibility of tomato to Alternaria solani. Mycorrhiza 16: 413-419.
Ghanta, R., S. Dutta and R. Mukhopadhyay. 2013. nvestigation on arbuscular mycorrhizal alliances in some threatened medicinal herbs of Burdwan district, West Bengal, India. J. Med. Plants Res. 7(7): 315-323.
Giovannetti, M. and B. Mosse. 1980. An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New. Phytol. 84: 489-500.
Habibzadeh, Y. 2015. The effects of arbuscular mycorrhizal fungi and phosphorus levels on dry matter production and root traits in cucumber (Cucumis sativus L.). Af. J. Env. Sc. Technol. 9 (2): 65-70.
Hetrick, B. A. D., D. C. Hertnett, G. W. T. Wilson and D. J. Gibson. 1994. Effects of mycorrhizae, phosphorus availability, and plant density on yield relationships among competing tallgrass prairie grasses. Can. J. Bot. 72: 168-176.
Hobbie, E. A. and J. V. Colpaert. 2003. "Nitrogen availability and colonization by mycorrhizal fungi correlate with nitrogen isotope patterns in plants. New. Phytol. 157: 115-226.
Juniper, S. and L.K. Abbott. 2006. 'Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza 16: 371–379.
Karhu, K., M. D.Auffret., A. J. Dungait. D. W. Hopkins and J. I. Prosser. 2014. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513:81–84.
Lingfei, L. I., A. Yang. and Z. Zhao. 2005. Seasonality of arbuscular mycorrhizal symbiosis and dark septate endophytes in a grassland site in southwest China. Micro. Ecol. 54: 367-373.
Lombini, A., E. Dinelli., C. Ferrari and A. Simoni. 1999. Plant-soil relationships in the serpentine screes of Mt. Prinzera (Northern Apennines, Italy). J Geochem Explor. 64: 19–33.
Marschner, H. 2012. Mineral nutrition of higher plants. 3nd ed. Academic Press, London.
Miller, R. M. and J. D. Jastrow 2000. Mycorrhizal fungi influence soil structure. In: Kapulnik, Y., Douds, D.D. (Eds.), Arbuscular Mycorrhizas: Physiology and Function. Kluwer Academic, Dordrecht, pp. 3–18.
Morton, J.B. and G. L. Benny. 1990. Revised classification of AMF: A new order, Glomales, 2 new suborder, Glomineae and Gigasporineae, and 2 new Families Acauloporaceae and Gigasporaceae, with an emendation of Glomaceae. Mycotaxon, 37: 471 - 491.
Phillips J. M. and D. S. Hayman. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British. Mycol. Soc. 55: 157-160.
Smith, S. E. and F. A. Smith. 2011. Mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu. Rev. Plant Biol. 62: 227–250
Taiz, L. and E. Zeiger. 2006. Plant Physiology. 4th edition. Sinauer Associates, Inc, Sunderland, MA.
Trappe, J.M. 1982. Synoptic keys to the genera and species of Zygomycetous mycorrhizal fungi Phytopathol. 72 (8): 1102-1108.
Veresoglou, S. D., G. Menexes and M. C. Rillig. 2012. Do arbuscular mycorrhizal fungi affect the allometric partition of host plant biomass to shoots and roots? A meta-analysis of studies from 1990 to 2010. Mycorrhiza 22:227–235
Vinichuk, M., A. F. S. Taylor, K. Rosén and K. J. Johanson. 2010. Accumulation of potassium, rubidium and caesium (133Cs and 137Cs) in various fractions of soil and fungi in a Swedish forest. Sci. Total Environ. 408: 2543-2548.
Wang, D. X., Y. Q. Lu and X. L. He. 2010. Effects of AM fungi on growth and physiological characters of Atractylodes Macrocephala under different P-applied levels. Act. Bot. Bras. 30 (1):136–142.
Zhang, F., D. Peng., C. X. Song and Q. S. Wu. 2015. Alleviation of magnesium deficiency by mycorrhiza in trifoliate orange: Changes in physiological activity. Emir. J. Food Agric. 27(10): 763-769.
Zhu, X., S. Fengbin., L. Shengqun and L. Fulai. 2016. Arbuscular mycorrhiza improve growth, nitrogen uptake, and nitrogen use efficiency in wheat grown under elevated CO2 Mycorrhiza. 26:133–140.
_||_