An Approximate Solution for Glucose Model via Parameterization Method in Optimal Control Problems
Subject Areas : Journal of Chemical Health RisksMohammad Gholami baladezaei 1 , Morteza Gachpazan 2 , Saedeh Foadian 3 , Hosein Mohammad-Pour Kargar 4
1 - Department of Applied Mathematics, School of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
2 - Department of Applied Mathematics, School of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
3 - Department of Applied Mathematics, Islamic Azad University, Damghan Branch, Damghan, Iran
4 - Department of Biology, Islamic Azad University, Damghan Branch, Damghan, Iran
Keywords:
Abstract :
1. Erding C., Minghui H., Shandong T., Huihe S., 2013. A new optimal control system design for chemical processes. Chinese Journal of Chemical Engineering. 21(12), 1341-1346.
2. Lenhart S., Workman J.T., 2007. Optimal control applied to biological models. Chapman and Hall/CRC.
3. Moore H., 2018. How to mathematically optimize drug regimens using optimal control. Journal of Pharmacokinetics and Pharmacodynamics. 45(1), 127-137.
4. Ackerman E., Rosevar J., Molnar G., 1969. Concepts and models of biomathematics. Dekker, New York, 131-156.
5. Gatewood L.C., Ackerman E., Rosevear J.W., Molnar G.D., 1970. Modeling blood glucose dynamics. Behavioral science. 15(1), 72-87.
6. MehneH., Hashemi Borzabadi A., 2006. A numerical method for solving optimal control problems using state parameterization. Numerical Algorithms. 42(2), 165-169.
7. Kafash B., Delavarkhalafi A., Karbassi S.M., 2012. Numerical solution of nonlinear optimal control problems based on state parameterization. Iranian Journal of Science & Technology. 43, 331-340.
8. Kafash B., Delavarkhalafi A., Karbassi S.M., 2012. Application of Chebyshev polynomials to derive efficient algorithms for the solution of optimal control problems. Scientia Iranica. 19(3), 795-805.
9. Kafash B., Delavarkhalafi A., Karbassi S.M., Boubaker K., 2014. A numerical approach for solving optimal control problems using the Boubaker polynomials expansion scheme. Journal of Interpolation and Approximation Scientific Computing.
10. Eisen M., 1988. Mathematical Methods and Models in the Biological Sciences. Prentice Hall, Englewood Cliffs, New Jersey.