Effects of size and type of coating of iron powders and copper additive on the properties of hollow steel spheres
Subject Areas :Hamid Sazegaran 1 , علیرضا کیانی رشید 2
1 - گروه مهندسی صنایع، دانشکده مهندسی، دانشگاه فناوری های نوین قوچان
2 - استاد گروه مهندسی مواد و متالورژی دانشگاه فردوسی مشهد
Keywords: Powder Metallurgy, Hollow steel sphere, Cellular structures, Surface fraction of porosity, Liquid phase sintering,
Abstract :
Metal hollow spheres are successfully used for manufacturing of cells and porosities in the cellular structures and metallic foams that important production methods of them are based on powder metallurgy. In this paper, steel hollow spheres are produced by powder metallurgy method and polystyrene beads are used as substrate materials. Polystyrene beads are separated from a polystyrene block and sorted by sieving. Then, mixture of sodium silicate, as binder, and iron powder was sprayed on prepared beads. After drying, a thin layer of iron powder was covered polystyrene beads. Finally, two different heat treatment processes to produce high strength steel hollow spheres was undertaken. These processes are involving the pyrolysis of polystyrene beads and sintering process. For shell thickness measurements, determination of porosity content and flaws evaluation, shell section of hollow spheres were studied by optical microscopy. Produced hollow steel spheres are nearly uniform thickness in shell. Size of iron powder particles, cupper content and type of coating of iron powder are strongly affected on shell thickness, porosity percent and shell flaws.
[1] J. Banhart, “Manufacture, characterisation and application of cellular metals and metal foams”, Progress in Materials Science, Vol. 46, pp. 559–632, 2001.
[2] M. F. Ashby, A. G. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson & H. N. G. Wadley, Metal Foams: A Design Guide, Butterworth–Heinemann, Massachusetts, 2000.
[3] H. P. Degischer & B. Kriszt, Handbook of Cellular Metals, Production, Processing and Applications, Wiley–VCH/Verlag GmbH, Weinheim, Germany, 2002.
[4] م. سبزواری، س. ع. سجادی و ا. مولودی، "بررسی خواص فوم نانوکامپوزیتی مس/ آلومینا تولید شده به روش متالورژی پودر"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، سال نهم، شماره چهارم، زمستان 1394.
[5] Y. Sugimura, J. Meyer, M. Y. He, H. Bart-Smith, J. Grenstedt & A. G. Evans, “On the mechanical performance of closed cell Al alloy foams”, Acta Materialia, Vol. 45, No. 12, pp. 5245-5259, 1997.
[6] Y. Sugimura, A. Rabiei, A. G. Evans, A. M. Harte & N. A. Fleck, “Compression fatigue of cellular Al alloys”, Journal of material science and engineering, Vol. 269A, pp. 38-48, 1999.
[7] A. Rabiei, A. O’Neill & B. Neville, “Processing and development of a new high strength metal foam”, MRS Fall 2004 Proceedings, Vol. 841, pp. 517-526, 2005.
[8] T. J. Lim, B. Smith & D. L. McDowell, “Behavior of a random hollow sphere metal foam”, Acta Materialia, Vol. 50, pp. 2867–2879, 2002.
[9] E. Baumeister, S. Klaeger, A. Kaldos, “Lightweight, hollow-sphere-composite (HSC) materials for mechanical engineering applications”, Journal of Materials Processing Technology, Vol. 155–156, pp. 1839–1846, 2004.
[10] P. Lhuissier, L. Salvo & Y. Brechet, “Sintered hollow spheres: Random stacking behaviour under uniaxial tensile loading”, Scripta Materialia, Vol. 63, pp. 277–280, 2010.
[11] L. J. Gibson & M. F. Ashby, Cellular Solids: Structure and Properties, 2nd ed. Cambridge, Cambridge University Press, 1997.
[12] O. Andersen, G. Stephani, Handbook of cellular metals. Production, Processing, Applications, Edited by H. P. Degischer, B. Kriszt, Weinheim, Wiley-VCH Verlag GmbH, 2002.
[13] L. J. Vendra, “Processing and characterization of aluminum-steel composite metal foams”, Metal Foams, Raleigh, North Carolina, 2008.
[14] Cellular Metallic Materials, Frounhofer, IFAM.
[15] M. Jaeckel, H. Smigilski, “Coating of polymeric spheres with particles”, European Patent DE 3724156, 1988.
[16] C. Augustin & W. Hungerbach, “Production of hollow sphere (HS) and hollow structure (HSS)”, Materials Letters, Vol. 63, pp. 1109-1112, 2009.
[17] M. Behnam, A. S. Golezani & M. M. Lima, “The effect of size and morphology of iron powder on shell density in low carbon steel hollow spheres”, Powder Metallurgy Progress, Vol. 11, pp. 185-192, 2011.
[18] M. Behnam, A. S. Golezani & M. M. Lima, “Optimization of surface quality and shell porosity in low carbon steel hollow spheres produced by powder metallurgy”, Powder Technology, Vol. 235, pp. 1025–1029, 2013.
[19] K. A. Khor, L. G. Yu, O. Andersen & G. Stephani, “Effect of spark plasma sintering (SPS) on the microstructure and mechanical properties of randomly packed hollow sphere (RHS) cell wall”, Materials Science and Engineering, Vol. 365A, pp. 130–135, 2003.
[20] Z. Y. Gao, “Mechanical behaviour of metallic hollow sphere materials: experimental study” Journal of Aerospace Engineering, Vol. 21, pp. 206–217, 2008.
[21] A. Fallet, P. Lhuissier, L. Salvo & Y. Brechet, “Mechanical behaviour of metallic hollow spheres foam”, Advanced Engineering Materials, Vol. 10, pp. 858–862, 2008.
[22] M. Reinfried, U. Waag, G. Stephani, F. Bretschneider, “Deformation behaviour of ultra light steel based hollow sphere structures”, Euro Mat 2003, Switzerland, 2003.
[23] T. Fiedler, H. S. Kim, I. V. Belova, S. W. Sloan, G. E. Murch & A. Ochsner, “Elastic finite element analysis on cross-sections of random hollow sphere structures”, Materialwissenschaft und Werkstofftechnik, Vol. 41, pp. 250–256, 2010.
[24] P. Yu, G. Stephani, S. D. Luo, H. Goehler & M. Qian, “Microwave-assisted fabrication of titanium hollow spheres with tailored shell structures for various potential applications”, Materials Letters, Vol. 86, pp. 84–87, 2012.
[25] A. Ochsner & C. Augustin, “Multifunctional metallic hollow sphere structures: manufacturing, properties and application”, Engineering Materials, pp. 101–107, 2009.