Abstract :
In applications like sliding electrical contacts good electrical/thermal conductivity as well as wear resistance is required besides suitable mechanical properties. Furthermore, in these types of applications it is necessary to be prevented from local welding of various parts of pieces to each other. Although the addition of ceramic particles to a conductive metal like copper can lead to decrease of above mentioned physical properties, the producing of copper matrix composites can induce high tensile strength, better wear resistance, and resistance to electrical current with high amperage improvement. Hence, at the present study, the copper based composites containing 2, 3 and 5 vol. % ultra-fine grained yttria stabilized zirconia (YSZ) particles were produced by powder metallurgy and spark plasma sintering (SPS) method. The distribution of reinforcing particles at the microstructure was carefully studied using electron microscopy. Additionally, the density, hardness and thermal conductivity values of the specimens were measured. Referring to the results, microstructural analysis showed satisfactorily distribution of reinforcement particles in copper matrix and the clustering of particles is not so noticeable. The relative density up to 95% for all specimens was obtained due to the sintering procedure. As a result of the presence of hard stabilized zirconia particles, an increase of 60 percent in the Brinell hardness of the Cu-5 vol.% YSZ composite sample was observed in comparison with unreinforced copper. Moreover, the determined thermal conductivity values decreased from 397 to 241 W/m K with increasing of reinforcement content from 0 to 5 vol. %. The variation in the thermal conductivities can be related to the microstructural characteristics such as reinforcement and porosity volume percent as well as other microstructural defects.
References:
[1] M. R. Akbarpour, E. Salahi, F. Alikhani Hesari, E. Y. Yoon, S. H. Kim & A. Simchi, “Microstructural development and mechanical properties of nanostructured copper reinforced with SiC nanoparticles”, Materials Science and Engineering, Vol. 568A, pp. 33-39, 2013.
[2] F. Akhtar, S. J. Askari, K. A. Shah, X. Du & Sh. Guo, “Microstructure, mechanical properties, electrical conductivity and wear behavior of high volume TiC reinforced Cu-matrix composites”, Materials Characterization, Vol. 60, pp. 327-336, 2009.
[3] R. Ritasalo, X. W. Liua, O. Soderberg, A. Keski-Honkola, V. Pikanen & S. P. Hannula, “The Microstructural Effects on the Mechanical and Thermal Properties of Pulsed Electric Current Sintered Cu-Al2O3 Composites”, Procedia Engineering, Vol. 10, pp. 124-129, 2011.
[4] ز. سید رئوفی، ح. ثقفیان و س. شبستری، " مطالعه و آنالیز فازی پودر نانوکامپوزیت Cu-Al2O3 ساخته شده با روش ترموشیمیایی"، فصلنامه علمی پژوهشی مهندسی مواد مجلسی، سال سوم، شماره سوم، پاییز 1388.
[5] M. Abdullah, J. Ahmad, M. Mehmood, H. Waqas & M. Mjahid, “Effect of deflocculants on hardness and densification of YSZ–Al2O3 (whiskers & amp; particulates) composites”, Composites Part B: Engineering, Vol. 43, pp. 1564-1569, 2012.
[6] D. Maeland, C. Suciu, I. Wearnhus & A.C. Hoffman, “Sintering of 4YSZ (ZrO2 + 4 mol% Y2O3) nanoceramics for solid oxide fuel cells (SOFCs), their structure and ionic conductivity”, Journal of the European Ceramic Society, Vol. 29, pp. 2537-2547, 2009.
[7] C. L. Yang, H. I. Hsiang, & C. C. Chen, “Characteristics of yttria stabilized tetragonal zirconia powder used in optical fiber connector ferrule”, Ceramics International, Vol. 31, pp. 297-303, 2005.
[8] B. V. M. Kumar, W. S. Kim, S. H. Hong, H. T. Bae & D. S. Lim, “Effect of grain size on wear behavior in Y-TZP ceramics”, Materials Science and Engineering, Vol. 527A, pp. 474-479, 2010.
[9] J. Ding, N. Zhao, Ch. Shi, X. Du & J. Li, “In situ formation of Cu–ZrO2 composites by chemical routes”, Journal of Alloys and Compounds, Vol. 425, pp. 390-394, 2006.
[10] G. Iepure, I. Vida-Simiti, N. Jumate, M. Ciudas, V. Hotea & I. Juhasz, “Effect of ZrO2 particles upon Cu-ZrO2 material used for the spot welding electrodes”, metalurgia international, Vol. 14, pp. 21-24, 2009.
[11] C. A. Leon, G. Rodriguez-Oritz, M. Nanko & E. A. Aguilar, “Pulsed electric current sintering of Cu matrix composites reinforced with plain and coated alumina powders”, Powder Technology, Vol. 252, pp. 1-7, 2014.
[12] K. Dash, B. C. Ray & D. Chaira, “Synthesis and characterization of copper–alumina metal matrix composite by conventional and spark plasma sintering”, Journal of Alloys and Compounds, Vol. 516, pp. 78-84, 2012.
[13] M. R. Akbarpour, E. Salahi, F. Alikhani Hesari, A. Simchi & S. H. Kim, “Microstructure and compressibility of SiC nanoparticles reinforced Cu nanocomposite powders processed by high energy mechanical milling”, Ceramics International, Vol 40, pp. 951-96, 2014.
[14] S. F. Moustafa, Z. Abdel-Hamid & A. M. Abd-Elhay, “Copper matrix SiC and Al2O3 particulate composites by powder metallurgy technique”, Materials Letters, Vol. 53, pp. 244-249, 2002.
[15] F. Shehata, A. Fathy, M. Abdelhamid & S. F. Moustafa, “Preparation and properties of Al2O3 nanoparticle reinforced copper matrix composites by in situ processing”, Materials & Design, Vol. 30, pp. 2756-2762, 2009.
[16] I. Çelikyürek, N. O. Korpe, T. Olcer & R. Gurler, “Microstructure, Properties and Wear Behaviors of (Ni3Al)p Reinforced Cu Matrix Composites”, Journal of Materials Science & Technology, Vol. 27, pp. 937-943, 2011.
[17] R. Ritasalo, M. E. Cura, X. W. Liu, Y. Ge, T. Kosonen, U. Kanerva, O. Soderberg & S. P. Hannula, “Microstructural and mechanical characteristics of Cu–Cu2O composites compacted with pulsed electric current sintering and hot isostatic pressing”, Composites Part A: Applied Science and Manufacturing, Vol. 45, pp. 61-69, 2013.
[18] B. R. Golla & B. Basu, “Spark Plasma Sintering of Nanoceramic Composites”, in Comprehensive Hard Materials, V.K. Sarin, Editor, Elsevier: Oxford, pp. 177-205, 2014.
[19] Z. H. Zhang, Z. F. Liu, J. F. Lu, X. B. Shen, F. C. Wang & Y. D. Wang, “The sintering mechanism in spark plasma sintering–Proof of the occurrence of spark discharge”, Scripta Materialia, Vol. 81, pp. 56-59, 2014.
[20] R. Orrù, R. Licheri, A. M. Locci, A. Cincotti & G. Cao, “Consolidation/synthesis of materials by electric current activated/assisted sintering”, Materials Science and Engineering, Reports, Vol. 63R, pp. 127-287, 2009.
[21] X. Tang, H. Zhang, D. Du, D. Qu, C. Hu, R. Xie & Y. Feng, “Fabrication of W–Cu functionally graded material by spark plasma sintering method”, International Journal of Refractory Metals and Hard Materials, Vol. 42, pp. 193-199, 2014.
[22] W. Zein Eddine, P. Matteazzi & J. P. Celis, “Mechanical and tribological behavior of nanostructured copper–alumina cermets obtained by Pulsed Electric Current Sintering”, Vol. 297, pp. 762-773, 2013.
[23] R. Ritasalo, M. E. Cura, X. W. Liu, O. Soderberg, T. Ritvonen & S. P. Hannula, “Spark plasma sintering of submicron-sized Cu-powder Influence of processing parameters and powder oxidization on microstructure and mechanical properties”, Materials Science and Engineering, Vol. 527A, pp. 2733-2737, 2010.
[24] R. M. German, “Sintering: from emperical observations to scientific principals”, Butterworth-Heinemann, pp. 136, 2014.
[25] Z. H. Zhang, F. C. Fang, L. Wang & S. K. Li, “Ultrafine- grained copper prepared by spark plasma sintering process”, Materials Science and Engineering, Vol. 476A, pp. 201-205, 2008.
[26] A. G. Mawson, G. A. Carter, R. D. Hart, N. M. Kirby & A.C. Nachmann, “Mechanical Properties of 8 Mole% Yttria-Stabilised Zirconia for Solid Oxide Fuel Cells”, In Materials Forum. Vo. 30, pp. 148-158, 2006.
[27] M. R. Akbarpour, E. Salahi, F. Alikhani Hesari, S. H. Kim & A. Simchi, “Effect of nanoparticle content on the microstructural and mechanical properties of nano-SiC dispersed bulk ultrafine-grained Cu matrix composites”, Materials & Design, Vol. 52, pp. 881-887, 2013.
[28] S. C. Tjong, “Carbon nanotube reinforced composites: metal and ceramic matrices”, John Wiley & Sons, pp. 54-56, 2009.
[29] A. Fathy, F. Shehata, M. Abdolhameed & M. Elmahday, “Compressive and wear resistance of nanometric alumina reinforced copper matrix composites”, Materials & Design, Vol. 36, pp. 100-107, 2012.
[30] ف. شجاعیپور، پ. عباچی، ک. پورآذرنگ وا. ح. مغنیان، "بررسی خواص فیزیکی و مکانیکی نانوکامپوزیت مس/اکسید کروم تولید شده به روش آلیاژ سازی مکانیکی و اکسیداسیون داخلی"، فصلنامه علمی پژوهشی مهندسی مواد مجلسی، سال پنجم، شماره دوم، تابستان 1390.
[31] A. Fathy & O. El-Kady, “Thermal expansion and thermal conductivity characteristics of Cu–Al2O3 nanocomposites”, Materials & Design, Vol. 46, pp. 355-359, 2013.
_||_