Fabrication of in situ Al-Ni surface composite on 2024 aluminum alloy by friction stir processing
Subject Areas :ابراهیم بهرامی 1 , مرتضی شمعانیان 2 , حسین ادریس 3
1 - دانشجو/ دانشگاه صنعتی اصفهان
2 - استاد / دانشگاه صنعتی اصفهان
3 - استاد / دانشگاه صنعتی اصفهان
Keywords: Friction Stir Processing, Wear, In-situ Al-Ni Composite, 2024 Aluminum,
Abstract :
In this research, in situ Al-Ni surface composite produced on 2024 aluminum alloy using friction stir processing (FSP). FSP performed at a tool rotating rate of 1250 rpm and travel speed of 24 mm/min with and without nickel powder. Metallographic images show that the grain size after FSP has reached about 30% of primary metal grain size. With the addition of nickel powder, intermetallic compound of Al3Ni is formed in situ. Micro-Vickers test demonstrates that the reinforcement particles (Ni) have uniform distribution near the surface of primary metal. After FSP, primary metal hardness of about 54 vickers reached to in its maximum value of 120 vickers and 129 vickers in stir zone without and with addition of nickel powder, respectively. The results show that the fabrication of in situ composite using FSP has improved the wear resistance of the primary metal.
[1] R. S. Mishra & M. W. Mahoney, “Effect of friction stir processing on the kinetics of superplastic deformation in an Al-Mg-Zr alloy”, Mater. Sci. Forum, Vol. 507, pp. 357-359, 2001.
[2] R. S. Mishra, P. S. De & N. Kumar, “Friction Stir Welding and Processing” Science and Engineering, Springer International Publishing, Switzerland, 2014.
[3] R. S. Mishra & W. M. Murray, “Friction Stir Welding and Processing”, ASM International, pp. 1-47, 2007.
[4] C. J. Hsu, P. W. Kao & N. J. Ho, “Ultrafine-grained Al–Al2Cu composite produced in situ by friction stir processing”, Scripta Materialia, Vol. 53, pp. 341–345, 2005.
[5] G. L. You, N. J. Ho & P. W. Kao, “The microstructure and mechanical properties of an Al–CuO in situ composite produced using friction stir processing”, Materials Letters, Vol. 90, pp. 26–29, 2013.
[6] I. S. Lee, P. W. Kao & N. J. Ho, “Microstructure and mechanical properties of Al–Fe in situ nanocomposite produced by friction stir processing”, Intermetallics, Vol. 16, pp. 1104–1108, 2008.
[7] I. S. Lee, P. W. Kao C. P. Chang & N. J. Ho, “Formation of Al-Mo intermetallic particle-strengthened aluminum alloys by friction stir processing”, Intermetallics, Vol. 35, pp. 9-14, 2013.
[8] Q. Zhang, B. L. Xiao, D. Wang & Z. Y. Ma, “Formation mechanism of in situ Al3Ti in Al matrix during hot pressing and subsequent friction stir processing”, Materials Chemistry and Physics, Vol. 130, pp. 1109–1117, 2011.
[9] M. Zohoora, M. K. Besharati Givi & P. Salami, “Effect of processing parameters on fabrication of Al–Mg/Cu composites via friction stir processing”, Materials and Design, Vol. 39, pp. 358–365, 2012.
[10] S. R. Anvari, F. Karimzadeh & M. H. Enayati, “A novel route for development of Al–Cr–O surface nano-composite by friction stirs processing”, Journal of Alloys and Compounds, Vol. 562, pp. 48–55, 2013.
[11] J. Lebrat, A. Varma & A. Miller, “Combustion synthesis of Ni3Al –matrix composites”, Matzllurgical Tranxactions, Vol. 23A, pp. 69-76, 1992.
[12] L. Kea, C. Huang, L. Xing & K. Huang, “Al–Ni intermetallic composites produced in situ by friction stir processing”, Journal of Alloys and Compounds, Vol. 503, pp. 494–499, 2010.
[13] D. Yadav & R. Bauri, “Processing, microstructure and mechanical properties of nickel particles embedded aluminium matrix composite”, Materials Science and Engineering, Vol. 528A, pp. 1326–1333, 2011.
[14] J. Qian, J. Li, J. Xiong, F. Zhang & X. Lin, “In situ synthesizing Al3Ni for fabrication of intermetallic-reinforced aluminum alloy composites by friction stir processing”, Materials Science and Engineering, Vol. 550A, pp. 279– 285, 2012.
[15] S. Ugender, A. Kumar & A. Somi Reddy, “Experimental Investigation of Tool Geometry on Mechanical Properties of Friction Stir Welding of AA 2014 Aluminium Alloy”, Procedia Materials Science, Vol. 5, pp. 824–831, 2014.
[16] A. Kumar, M. M. Mahapatra, P. K. Jha, N. R. Mandal & V. Devuri, “Influence of tool geometries and process variables on friction stir butt welding of Al–4.5%Cu/TiC in situ metal matrix composites”, Materials and Design, Vol. 59, pp. 406–414, 2014.
[17] K. V. Jata, M. W. Mahoney, R. S. Mishra, S. L. Semiatin & D. P. Filed, “Friction Stir Welding and Processing”, TMS, USA, 2001.
[18] R. S. Mishra, “Friction Stir Welding and Processing”, Materials Science and Engineering, Vol. 50, pp. 1-78, 2005.
[19] S. P. Ringer & K. Hono, “Microstructural Evolution and Age Hardening in Aluminium Alloys: Atom Probe Field-Ion Microscopy and Transmission Electron Microscopy Studies”, Materials Characterization, Vol. 44, pp. 101–131, 2000.
[20] R. S. Mishra, P. S. De & N. Kumar, “Friction Stir Welding and Processing”, Science and Engineering, Springer International Publishing, Switzerland, 2014.
[21] P. Sampath, V. K. Parangodath, K. R. Udupa & U. B. K. Hindawi, “Fabrication of Friction Stir Processed Al-Ni Particulate Composite and Its Impression Creep Behaviour”, Journal of Composites, Vol. 2015, pp. 9, 2015.
[22] T. Khaled, “An Outsider Looks at Friction Stir Welding”, Lakewood, CA: U.S. Federal Aviation Administration, Print, 2005.
[23] S. R. Anvari, F. Karimzadeh & M. H. Enayati, “Wear characteristics of Al–Cr–O surface nano-composite layer fabricated on Al6061 plate by friction stir processing”, Wear, Vol. 304, pp. 144–151, 2013.
[24] Y. C. Chen & K. Nakata, “Evaluation of microstructure and mechanical properties in
friction stir processed SKD61 tool steel”, Mater Charact, Vol. 60, pp. 1471–5, 2009.