Analysis of Thermo-Mechanical Behavior of Gold Nanowire by Using Molecular Dynamics Method
Subject Areas :Mohammad Tahmasebipour 1 , Reihaneh Ahmadi 2 , Mehrzad Modarres 3
1 - University of Tehran
2 - University of Tehran
3 - University of Tehran
Keywords: Elongation, Stress-Strain Curve, Molecular Dynamics, Nano-Wire, Failure Stress,
Abstract :
With the increasing growth and development of Nano science and nanotechnology, applications of the Nano-sensors, Nano-electro-mechanical systems, Nano-electric systems and Nano-photonic devices is rising day-by-day. Nanowires, as one of the key components of these systems, play a significant role in their proper function. Therefore, recognition of the thermo-mechanical behavior of nanowires has a particular importance. Due to the inevitable problems in conducting empirical experiments on nanowires, including the need for highly precise and advanced equipment, as well as the high cost and time needed to carry out these experiments, a number of researchers have simulated the behavior of nanowires. Molecular dynamics simulation is one of the best methods for recognizing the properties of nanowires, which is used in most nano-scale simulations. By using simulation and modeling methods, nanowires properties can be studied at a very low cost and short time, in comparison with experimental methods. In this paper, the effect of temperature (300, 450, 600 and 700 ◦K) and strain rate (2×108, 2×109 and 2×1010 1/s) on the mechanical properties of a gold nanowire (with diameter and length of 3 and 6 nanometers, respectively) such as stress-strain curve, yield stress, stress at failure moment, and the magnitude of nanowire elongation by molecular dynamics method have been investigated to determine the thermo-mechanical behavior of the gold nanowire.
[1] N. A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, P. M. Petroff & J. R. Heath, “Ultrahigh-density nanowire lattices and circuits”, Science, Vol. 300, pp. 112-115, 2003.
[2] H. Yan, S. H. Park, G. Finkelstein, J. H. Reif & T. H. LaBean, “DNA-templated self-assembly of protein arrays and highly conductive nanowires”, science, Vol. 301, pp. 1882-1884, 2003.
[3] Y. Xi, C. Hu, C. Zheng, H. Zhang, R. Yang & Y. Tian, “Optical switches based on CdS single nanowire”, Materials Research Bulletin, Vol. 45, pp. 1476-1480, 2010.
[4] E. O. Hall, “The deformation and ageing of mild steel: III discussion of results”, Proceedings of the Physical Society, Section B, Vol. 64, pp. 747, 1951.
[5] J. Diao, K. Gall & M. L. Dunn, “Surface-stress-induced phase transformation in metal nanowires”, Nature Materials, Vol. 2, pp. 656, 2003.
[6] H. S. Park, “Stress-induced martensitic phase transformation in intermetallic nickel aluminum nanowires”, Nano Letters, Vol. 6, pp. 958-962, 2006.
[7] H. S. Park, K. Gall & J. A. Zimmerman, “Shape memory and pseudoelasticity in metal nanowires”, Physical Review Letters, Vol. 95, pp. 255504, 2005.
[8] M. Tahmasebipour & H. Khezerlou, “Molecular Dynamic Simulation of the Graphene Nano-Plates”, Journal of Nanoelectronics and Optoelectronics, Vol. 9, pp. 635-639, 2014.
[9] H. Khezerlou & M. Tahmasebipour, “Poly Methyl Methacrylate (PMMA) Behavior Analysis Using Molecular Dynamics Simulation Method”, Journal of Nanoelectronics and Optoelectronics, Vol. 9, pp. 675-677, 2014.
[10] H. Khezerlou & M. Tahmasebipour, “Molecular dynamic simulation of graphene-poly methyl methacrylate nano-composite”, Journal of Nanoelectronics and Optoelectronics, Vol. 9, pp. 580-583, 2014.
[11] ل. مهری و ج. داودی، "شبیه سازی دینامیک مولکولی ذوب آلیاژ منظم و نامنظمAg-Au"، فصلنامه علمی – پژوهشی فرآیندهای نوین در مهندسی مواد، دوره 3، شماره 2، 18-11، تابستان، 1388.
[12] C. Ji & H. S. Park, “The coupled effects of geometry and surface orientation on the mechanical properties of metal nanowires”, Nanotechnology, Vol. 18, pp. 305704, 2007.
[13] Z. Wu, Y. W. Zhang, M. H. Jhon, H. Gao & D. J. Srolovitz, “Nanowire failure: Long= brittle and short= ductile”, Nano Letters, Vol. 12, pp. 910-914, 2012.
[14] B. Wang, D. Shi, J. Jia, G. Wang, X. Chen & J. Zhao, “Elastic and plastic deformations of nickel nanowires under uniaxial compression”, Physica E: Low-Dimensional Systems and Nanostructures, Vol. 30, pp. 45-50, 2005.
[15] S. G. Volz & G. Chen, “Molecular dynamics simulation of thermal conductivity of silicon nanowires”, Applied Physics Letters, Vol. 75, pp. 2056-2058, 1999.
[16] Setoodeh, H. Attariani & M. Khosrownejad, “Nickel nanowires under uniaxial loads: A molecular dynamics simulation study”, Computational Materials Science, Vol. 44, pp. 378-384, 2008.
[17] L. Miao, V. R. Bhethanabotla & B. Joseph, “Melting of Pd clusters and nanowires: a comparison study using molecular dynamics simulation”, Physical Review B, Vol. 72, pp. 134109, 2005.
[18] H. A. Wu, “Molecular dynamics study on mechanics of metal nanowire”, Mechanics Research Communications, Vol. 33, pp. 9-16, 2006.
[19] S. J. A. Koh, H. P. Lee, C. Lu & Q. H. Cheng, “Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: Temperature and strain-rate effects”, Physical Review B, Vol. 72, pp. 085414, 2005.
[20] B. Ma, Q. Rao & Y. He, “Molecular dynamics simulation of temperature effect on tensile mechanical properties of single crystal tungsten nanowire”, Computational Materials Science, Vol. 117, pp. 40-44, 2016.
[21] L. Chang, C. Y. Zhou, L. L. Wen, J. Li & X. H. He, “Molecular dynamics study of strain rate effects on tensile behavior of single crystal titanium nanowire”, Computational Materials Science, Vol. 128, pp. 348-358, 2017.
[22] H. Liang, M. Upmanyu & H. Huang, “Size-dependent elasticity of nanowires: nonlinear effects”, Physical Review B, Vol. 71, pp. 241403, 2005.
[23] M. R. Sørensen, M. Brandbyge & K. W. Jacobsen, “Mechanical deformation of atomic-scale metallic contacts: structure and mechanisms”, Physical Review B, Vol. 57, pp. 3283, 1998.
[24] Nakamura, M. Brandbyge, L. B. Hansen & K. W. Jacobsen, “Density functional simulation of a breaking nanowire”, Physical Review Letters, Vol. 82, pp. 1538, 1999.
[25] X. W. Zhou, R. A. Johnson & H. N. G. Wadley, “Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers”, Physical Review B, Vol. 69, pp. 144113, 2004.
[26] X. W. Zhou & H. N. G. Wadley, “Atomistic simulation of the vapor deposition of Ni/Cu/Ni multilayers: Incident adatom angle effects”, Journal of Applied Physics, Vol. 87, pp. 553-563, 2000.
[27] X. W. Zhou, H. N. G. Wadley, R. A. Johnson, D. J. Larson, N. Tabat, A. Cerezo, A. K. Petford-Long, G. D. W. Smith, P. H. Clifton, R. L. Martens & T. F. Kelly, “Atomic scale structure of sputtered metal multilayers”, Acta Materialia, Vol. 49, pp. 4005-4015, 2001.
[28] H. A. Wu, “Molecular dynamics study of the mechanics of metal nanowires at finite temperature”, European Journal of Mechanics-A/Solids, Vol. 25, pp. 370-377, 2006.
[29] M. Doyama & Y. Kogure, “Embedded atom potentials in fcc and bcc metals”, Computational Materials Science, Vol. 14, pp. 80-83, 1999.
[30] F. Kassubek, C. A. Stafford, H. Grabert & R. E. Goldstein, “Quantum suppression of the Rayleigh instability in nanowires”, Nonlinearity, Vol. 14, pp. 167, 2001.
[31] F. Sato, A. S. Moreira, P. Z. Coura, S. O. Dantas, S. B. Legoas, D. Ugarte & D. S. Galvao, “Computer simulations of gold nanowire formation: the role of outlayer atoms”, Applied Physics A, Vol. 81, pp. 1527-1531, 2005.
[32] R. Liang, A. S. Khan, “A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures”, International Journal of Plasticity, Vol. 15, pp. 963–980, 1999.
_||_