In vitro investigation of the GdF3:Bi nanoparticles synthesized via hydrothermal method as the dual MRI-CT contrast agent
Subject Areas :Mohammad Abbasi 1 , رضا احمدی 2 , Amirhossein Moghanian 3 , Aazam Jannati Esfehani 4
1 - Imam Khomeini International University
2 - گروه مهندسی مواد، دانشکده فنی و معندسی، دانشگاه بین الملل امام خمینی (ره)، قزوین، ایران
3 - Department of Materials Engineering, Imam Khomeini International University, Qazvin 34149-16818, Iran
4 - Qazvin University of Medical Sciences
Keywords: Magnetic nanoparticles, surfactant, MRI, CT Scan, poly ethylene glycol,
Abstract :
In the present study, the Bismuth doped GdF3 nanoparticles were synthesized via the hydrothermal method and the effect of temperature, time and NH4F concentration was investigated. The Poly Ethylene Glycol was used as the surfactant. The phases characterization was inducted via XRD, FE-SEM and EDS techniques. The in vitro investigation of the samples as the contast agents were performed using MR and CT imaging. the sample synthesized at 180 oC,, 6 hours and the NH4F concentration twice the Stoichiometric concentration that had the semi spherical structure with mean size lower than 100 nm was the suitable sample and the in vitro studies show that the particles act as an excellent CT contrast agent and also as an effective MRI contrast agent at concentrations between 22.5 and 180 mM. Briefly, The use of Bismuth dopant ant GdF3 nanoparticles was successfully performed and The particles can used as the potential MRI-CT contrast agents.
[1] W. Mulder, G. Strijkers, G. vanTilborg, D. P. Cormode, Z. A. Fayad & K. Nicolay, "Nanoparticulate assemblies of amphiphiles and diagnostically active materials for multimodality imaging", Accounts of chemical research, vol. 42, pp. 904-914, 2009.
[2] R. A. Sperling, P. R. Gil, F. Zhang, M. Zenella & W. J. Parak, "Biological applications of gold nanoparticles", Chemical Society Reviews, vol. 37, pp. 1896-1908, 2008.
[3] J. Gao, H. Gu & B. Xu, "Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications", Accounts of chemical research, vol. 42, pp. 1097-1107, 2009.
[4] J. Zhu, Y. Lu, Y. Li, J. Jiang, L. Cheng, Z. Liu, L. Guo, Y. Pan & H. Gu, "Synthesis of Au–Fe 3 O 4 heterostructured nanoparticles for in vivo computed tomography and magnetic resonance dual model imaging", Nanoscale, vol. 6, pp. 199-202, 2014.
[5] G. Huang, J. Hu, H. Zhang, Z. Zhou, X. Chi & J. Gao, G. "Highly magnetic iron carbide nanoparticles as effective T2 contrast agents", Nanoscale, vol. 6, pp. 726-730, 2014.
[6] J. M. K. M. Fitcher, W. J. Chu & T. M. Reineke, "Polymer beacons for luminescence and magnetic resonance imaging of DNA delivery", Proceedings of the National Academy of Sciences, vol. 106, pp. 16913-16918, 2009.
[7] W. Kong, W. Lee, Z. Cui, K. Bae, T. Park, J. Kim, K. Park & S. Seo, "Nanoparticulate carrier containing water-insoluble iodinated oil as a multifunctional contrast agent for computed tomography imaging", Biomaterials, vol. 28, pp. 5555-5561, 2007.
[8] K. DeKrafft , Z. Xie, G. Cao, S. Tran, L. Ma, O. Zhou & W. Lin, "Iodinated nanoscale coordination polymers as potential contrast agents for computed tomography", Angewandte Chemie, vol. 121, pp. 10085-10088, 2009.
[9] O. Rabin, J. Manuel, J. Grimm, G. Wojtkiewicz & R. Weissleder, "An X-ray computed tomography imaging agent based on longcirculating bismuth sulphide nanoparticles", Nature Materials, vol. 5, pp. 118-122.
[10] D. Kim, S. Park, J. Lee, Y. Jeong & S. Jon, "Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging"t Journal of the American Chemical Society, vol. 129, pp. 7661-7665, 2007.
[11] L. K. McEvoy, C. F. Notestine, J. C. Roddey, D. J. Hogler, D. Holland, D. S. Karow, C. J. Pung, J. B. Brewer & A. M. Dale, "Alzheimer disease: quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment", Radiology, vol. 251, pp. 195-205, 2009.
[12] P. Padmanabhan, A. Kumar, K. Sundramurthy & R. K. Chaudhary, "Nanoparticles in practice for molecular-imaging applications: An overview", Acta biomaterialia, vol. 41, pp. 1-16, 2016.
[13] R. E. Hendrick & E. M. Haacke, "Basic physics of MR contrast agents and maximization of image contrast", Journal of Magnetic Resonance Imaging, vol. 3, pp. 137-148, 1993.
[14] ر. احمدی و م. شاعری، "تولید و کاربرد نانوذرات اکسید آهن با پوشش یددار برای تصویربرداری پزشکی دوگانه CT-MRI "، نانو مواد، دوره 9، صفحه 121-129، 1396.
[15] Y. Huh, Y. Jun, H. Song, S. Yoon, J. Shin, J. Suh & J. Cheon, "In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals", Journal of the American Chemical Society, vol. 127, pp. 12387-12391, 2005.
[16] Y. Lim, M. Cho, B. Choi, J. Lee & B. Chung, "Paramagnetic gold nanostructures for dual modal bioimaging and phototherapy of cancer cells", Chemical communications, vol. 40, pp. 4930-4932, 2008.
[17] P. J. Debouttière, S. Roux, F. Vocanson, C. Billotey, O. Beuf, A. Favre-Réguillon, Y. Lin, S. Pellet-Rostaing, R. Lamartine, P. Perriat & O. Tillement, "Design of gold nanoparticles for magnetic resonance imaging", Advanced Functional Materials, vol. 16, pp. 2330-2339, 2006.
[18] C. Alric, J. Taleb, G. Duc, C. Mandon & O. Tillement, "Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging", Journal of the American Chemical Society, vol. 130, pp. 5908-5915, 2008.
[19] U. Jeong, X. Teng, Y. Wang, H. Yang & Y. Xia, "Superparamagnetic colloids: controlled synthesis and niche applications.", Advanced Materials, vol. 19, pp. 33-60, 2007.
[20] E. Taboada, R. Solans, E. Rudrigues & R. Weissleder, "Supercritical‐fluid‐assisted one‐pot synthesis of biocompatible core (γ‐Fe2O3)/shell (SiO2) nanoparticles as high relaxivity T2‐contrast agents for magnetic resonance imaging", Advanced Functional Materials, vol. 19, pp. 2319-2324, 2009.
[21] H. B. Na, I. C. Song & T. Hyeon, "Inorganic nanoparticles for MRI contrast agents". Advanced materials, vol. 21, pp. 2133-2148, 2009.
[22] B. A. Moffat, G. R. Reddy, P. McConville, D. E. Hall, T. L. Chenevert, R. R. Kopelman, M. Philbert, R. Weissleder, A. Rehemtulla & B. Ross, "A novel polyacrylamide magnetic nanoparticle contrast agent for molecular imaging using MRI", Molecular imaging, vol. 2, pp. 324-332, 2003.
[23] X. Shi, S. Wang, S. D. Swanson, S. Ge, Z. Cao, M. E. Van Antwerp, K. J. Landmark & J. R. Baker, "Dendrimer‐functionalized shell‐crosslinked iron oxide nanoparticles for in‐vivo magnetic resonance imaging of tumors", Advanced materials, vol. 20, pp. 1671-1678, 2008.
[24] U. L. Tromsdorf, N. Bigall, M. G. Gaul, G. Adam & H. Weller, "Size and surface effects on the MRI relaxivity of manganese ferrite nanoparticle contrast agents", Nano letters, vol. 7, pp. 2422-2427, 2007.
[25] P. Wu, C. Su, F. Cheng, J. Weng, J. Chen & D. Shieh, "Modularly assembled magnetite nanoparticles enhance in vivo targeting for magnetic resonance cancer imaging", Bioconjugate chemistry, vol. 19, pp. 1972-1979, 2008.
[26] C. Su, H. Sheu, C. Lin, C. Huang, Y. Lo, J. Chen & C. Yeh, "Nanoshell magnetic resonance imaging contrast agents", Journal of the American Chemical Society, vol. 129, pp. 2139-2146, 2007.
[27] C. A. S. Regino, S. Wallbridge, M. Bernardo P. L. Choyke & M. W. Brechbiel, "A dual CT‐MR dendrimer contrast agent as a surrogate marker for convection‐enhanced delivery of intracerebral macromolecular therapeutic agents", Contrast media & molecular imaging, vol. 3, pp. 2-8, 2008.
[28] J. Ziyang J, P. Hongsia, C. Wenhui & Y. Fabiao, "A novel multifunctional carrier with magnetic-NIR luminescent-microwave heating characteristics for drug delivery", Journal of Drug Delivery Science and Technology, vol. 79, pp. 104106, 2023.
[29] M. Wiart, C. Tavakoli, V. Hubert, I. Hristovsk, C. Dumot, S. Parol, F. Leroug, F. Chauveau, E. Canet-Soulas, O. Pascual, D. P. Cormod, E. Brun & H. Elleaum, "Use of metal-based contrast agents for in vivo MR and CT imaging of phagocytic cells in neurological pathologies", Journal of Neuroscience Methods, vol. 383, pp. 109729, 2023.
[30] L. Dan, & L. Qing, "An innovative and facile strategy to construct GdF3:Eu3+@Void@SiO2 nanowire-in-nanotube structured nanofibers with photoluminescence-magnetism Bi-functionality", Journal of Luminescence, vol. 249, pp. 119040, 2022.
[31] W. Shi, S. Song & H. Zhang, "Hydrothermal synthetic strategies of inorganic semiconducting nanostructures", Chemical Society Reviews, vol. 42, pp. 5714-5743, 2013.
[32] H. Elhendawi, R. M. Felfel, M. Bothaina & F. M. Reicha, "Effect of synthesis temperature on the crystallization and growth of in situ prepared nanohydroxyapatite in chitosan matrix", International Scholarly Research Notices, vol. 2014, pp. 1-8, 2014.
[33] Z. Xiaoting, T. Hayakawa, M. Nogami & Y. Ishikawa, "Selective Synthesis and Luminescence Properties of Nanocrystalline GdF3: Eu 3+ with Hexagonal and Orthorhombic Structures", Journal of Nanomaterials, vol. 2010, pp. 1-7, 2010.
[34] T. Furuzono, D. Walsh, K. Sato, K. Sonoda & J. Tanaka, "Effect of reaction temperature on the morphology and size of hydroxyapatite nanoparticles in an emulsion system". Journal of Materials Science Letters, vol. 20, pp. 111-114, 2001.
[35] R. Kumar, K. H. Prakash, P. Cheang & K. A. Khor, "Temperature driven morphological changes of chemically precipitated hydroxyapatite nanoparticles", Langmuir, vol. 20, pp. 5196-5200, 2004.
[36] C. Kothapalli, M. Wei, A. Vasiliev & M. T. Shaw, "Influence of temperature and concentration on the sintering behavior and mechanical properties of hydroxyapatite". Acta Materialia, vol. 52, pp. 5655-5663, 2004.
[37] Y. Li, Y. Wang, X. Zhou, K. Zheng, Y. Sheng & H. Zou, "Controlled synthesis and luminescence properties of GdF 3 with different crystalline phases and morphologies", CrystEngComm, vol. 19, pp. 1517-1527, 2017.
[38] ه، عربی، ن. خلیلی مقدم و ح. شیرین زاده، "مطالعه تأثیر مقدار pH بر روی خواص ساختاری و مغناطیسی نانوذرات فریتمنیزیم"، پژوهش سیستمهای بسذرهای، دوره 1، صفحه 9-20، 1390.
[39] H. Chen, Y. Gao, Y. Liu & H Luo, "Hydrothermal synthesis of ytterbium silicate nanoparticles", Inorganic chemistry, vol. 49, pp. 1942-1946, 2010.
[40] T. Sato, S. Kiwamu, A. Keiko & H. Toshihiko, "Effect of pH on Hydrothermal Synthesis of γ-Al2O3 Nanoparticles at 673 K", Chemistry letters, vol. 37, pp. 242-243, 2008.
[41] J. V. Williams,C. N. Adams, N. A. Kotov & P. E. Savage, "Hydrothermal synthesis of CdSe nanoparticles", Industrial & engineering chemistry research, vol. 46, pp. 4358-4362, 2007.
[42] R. Sardar, & J. S. Shumaker-Parry, "Spectroscopic and microscopic investigation of gold nanoparticle formation: ligand and temperature effects on rate and particle size", Journal of the American Chemical Society, Vol. 133, pp. 8179-8190, 2011.
[43] D. Chen, P. Huang, Y. Yu, F. Huang, A. Yang & Y. Wang, "Dopant-induced phase transition: a new strategy of synthesizing hexagonal upconversion NaYF4 at low temperature", Chemical Communications, vol. 47, pp. 5801-5803, 2011.
[44] D. Yang, X. Kang, M. Shang, G. Li, C. Peng, C. Li & J. Lin, "Size and shape controllable synthesis and luminescent properties of BaGdF5: Ce3+/Ln3+ (Ln= Sm, Dy, Eu, Tb) nano/submicrocrystals by a facile hydrothermal process", Nanoscale, vol. 3, pp. 2589-2595, 2011.
[45] G. Amin, M. H. Asif, A. Zainelabedin, S. Zaman, O. Nur & M. Willander, "Influence of pH, precursor concentration, growth time, and temperature on the morphology of ZnO nanostructures grown by the hydrothermal method", Journal of Nanomaterials, vol. 2011, pp. 1-9, 2011.
[46] X. Shi, K. Gao, S. Xiong & R. Gao, "Multifunctional transferrin encapsulated GdF3 nanoparticles for sentinel lymph node and tumor imaging", Bioconjugate Chemistry, vol. 31, pp. 2576-2584, 2020.