Reviewing the effect of oxidizing sintering aids on sinterability behavior of boron carbide composites (B4C)
Subject Areas :Mehdi Shakori 1 , Mina Saeeidi heidari 2 , Hamidreza Baharvandi 3
1 - دانشجوی کارشناسی ارشد مهندسی مواد مرکب، دانشگاه صنعتی مالک اشتر تهران
2 - دانشجوی دکترای، دانشگاه آزاد اسلامی، واحد تهران جنوب، باشگاه پژوهشگران جوان و نخبگان،تهران
3 - دانشیار، مجتمع مواد و فناوریهای ساخت، دانشگاه صنعتی مالک اشتر تهران
Keywords: Boron Carbide, Additives, Mechanical and Physical Properties, Sintering ability, fracture toughness,
Abstract :
Boron carbide because of properties such as high hardness, high Young's modulus and low density is highly regarded, however due to difficulties in sintering ability, low fracture toughness and low oxidation resistance at temperatures greater than 1000 ° C, its application is limited relatively. Obtaining a high-density boron carbide by conventional methods is very difficult and costly because of the high melting point, covalently bonded, its low self-diffusion and high vapor pressure. Many of researches have been done to improve the sintering condition by different methods and using various kinds of sintering aids. It is often observed that small amounts of oxides have been more effective on sintering improvement of non-oxidizing ceramics. In this paper, the effect of different oxidizing sintering aids has been reported on sintering behavior and mechanical properties of boron carbide.
[1] L. Shi, et al., “A low temperature synthesis of crystalline B4C ultrafine powders”, Solid state communications, Vol. 128, pp. 5-7, 2003.
[2] B. V. S. subba Rao et al., “Synthesis of High Purity Boron Carbide Powder”, Ceramic Powders for High-tech Applications, John Wiley and sons Pub, New York, 2004.
[3] F. Thévenot, “Boron carbide—a comprehensive review”, European Ceramic Society, Vol. 6, pp. 205-225, 1990.
[4] Sinha, T. Mahata, & B. P. Sharma, “Carbothermal route for preparation of boron carbide powder from boric acid–citric acid gel precursor”, nuclear materials, Vol. 301, pp. 165-169, 2002.
[5] Goldstein, G. Ygal & G. Ayala, “Boron carbide–zirconium boride in situ composites by the reactive pressureless sintering of boron carbide–zirconia mixtures”, American Ceramic Society, Vol. 84, pp. 642-644, 2004.
[6] K. Knudsen & W. Rafaniello, “Titanium diboride/boron carbide composites with high hardness and toughness”, U.S. Patent, Vol. 032, No. 5, pp. 242, 1991.
[7] H. R. Baharvandi, “Investigation on addition of ZrO2 - 3mol% Y2O3 powder on sintering behavior and mechanical properties of B4C”, materials science, Vol. 41, pp. 5269-5272, 2006.
[8] L. Levin, N. Frage & M. P. Dariel, “The effect of Ti and TiO2 additions on the pressureless sintering of B4C”, Metallurgical and Materials Transactions, Vol. 30A, pp. 3201-3210, 1999.
[9] V. V. Skorokhod, M. D. Vlajic & V. D. Krstic, “Pressureless Sintering of B4C-TiB2 Ceramic Composites”, Materials science forum, Vol. 282, pp. 219-224, 1998.
[10] G. N. Makarinko, “Borides of IVB Group”, Boron and Refractory Borides. Springer Berlin Heidelberg, pp. 310-30, 1997.
[11] D. K. Bose, K. U. Nair & C. K. Gupta, “Production of high purity boron carbide”, High Temperature Materials and Processes, Vol. 7, pp. 133-140, 1986.
[12] K. A. Schwetz & A. Lipp, “Boron Carbide,Boron Nitride and metal Borides”, Uhlmann's Encycl. Indust. Chem., A4, ed. F. T. Cambell, R. Pfefrkon and J. F. Rounsaville, pp. 295-307, 1985.
[13] Lipp, “Boron Carbide, Production, Properties and Applications”, Technological Review, Vol. 14, pp. 28-33, 1995.
[14] K. Suri, C. Subramanian, J. K. Sonber & T. S. R. Ch. Murthy, “Synthesis and consolidation of boron carbide: a review”, Int. Mat. Rev, Vol. 55, 2010.
[15] K. Silver,“ Processing of Nano-Sized Boron Carbide Powder”, M. Sc. Thesis University of Georgia Institute of Technology, 2007.
[16] F. Lorenzo & W. Hankla, “Mechanical properties of particulate-reinforced boron carbide composites”, M. Sc. Thesis University of South Florida, 2008.
[17] M. Aizenshtein, I. Mizrahi, N. Froumin, S. Hayun, M. P. Dariel & N. Frage: “Interface interaction in the B4C/(Fe–B–C) system”, Mater. Sci. Eng, Vol. 495, pp. 70–74, 2008.
[18] Mizrahi, A. Raviv, H. Dilman, M. Aizenshtein, M. P. Dariel & N. Frage, “The effect of Fe addition on processing and mechanical properties of reaction infiltrated boron carbide-based composites”, Mater. Sci., Vol. 42, pp. 6923–6928, 2007.
[19] N. Frage, S. Hayun, S. Kalabukhov & M. P. Dariel, “The effect of fe addition on the densification of B4C Powder by spark plasma sintering”, Powder Met. and Met. Ceram, Vol. 46, pp. 11-12, 2007.
[20] Q. C. Jiang, et al., “Fabrication of B4C particulate reinforced magnesium matrix composite by powder metallurgy”, alloys and compounds, Vol. 386, pp. 7-181, 2005.
[21] P. Mogilevsky, et al., “Reactive formation of coatings at boron carbide interface with Ti and Cr powders”, European Ceramic Society, Vol. 15, pp. 527-535, 1995.
[22] S. Ranganath, M. Vijayakumar & J. Subrahmanyan, “Combustion-assisted synthesis of Ti-TiB-TiC composite via the casting route”, Materials Science and Engineering, Vol. 149A, pp. 253-257, 1992.
[23] F. Ye, Zh. Hou, H. Zhang & L. Liu,“ Densification and Mechanical Properties of Spark Plasma Sintered B4C with Si as a Sintering Aid”, Am. Ceram. Soc., Vol. 93, pp. 2956-2959, 2010.
[24] M. Cocuzza, “Development of silicon and silicon carbide-based micro-electrometromechanical systems”, Ph. D. Thesis University of Politecnico di Torino, Torino, 2010.
[25] R. Telle & G. Petzow, “Reaction Sintering of Boron Carbide (B4C) with Silicon and Titanium”, Horiz. Powd. Metall., Proc. Int. Powd. Metall. Conf. Exhib, Vol. 2, pp. 1155-1158, 1986.
[26] M. Taylor, N. Falls & R. J. Palicka, “Dense carbide composite for armor and abrasives”, US patent, No. 3, pp. 765-300, 1973.
[27] Z. F. Chen, Y. C. Su & Y. B. Cheng, “Formation and sintering mechanisms of reaction bonded silicon carbide–boron carbide composites”, Key Eng. Mater., Vol. 352, pp. 207–212, 2007.
[28] M. Zhang, W. Zhang, L. Gao & Y. Zhang, “Fabrication and Microstructure of B4C Matrix composites by Hot-Pressing Sinter”, Advanced Materials Research, pp. 326-329 & 368-373, 2012.
[29] D. C. Halverson, A. J. Pyzik & I. A. Aksay, “Processing and Microstructural Characterization of B4C-Al Cermets”, Ceram. Eng. and Sci. Pro., Vol. 6, 1985.
[30] N. Tuncer, B. Tasdelen & G. Arslan, “Effect of passivation and precipitation hardening on processing and mechanical properties of B4C–Al composites”, Ceram. Int., Vol. 37, pp. 2861–2867, 2011.
[31] M. Mashhadi, E. Taheri-Nassaj & V. M. Sglavo, “Pressureless sintering of boron carbide”, Ceram. Int., Vol. 36, pp. 151–159, 2010.
[32] S. Lee & S. Kang, “Low-temperature processing of B4C–Al composites via infiltration technique”, Mat. Chem. and Phys., Vol. 67, pp. 249–255, 2001.
[33] G. Wen, et al., “Processing of in situ toughened BWC composites by reaction hot pressing of B4C and WC”, Scripta materialia, Vol. 43, pp. 853-857, 2000.
[34] S. S. OrdanÕyan, A. A. Boldin & E. V. Prilutskii, “Phase Relations in the B4C-W2B5 System”, Zh. Prikl. Khim. (S.-Peterburg), Vol. 73, pp. 2042-2044, 2000.
[35] D. D. Radev, Z. T. Zakhariev & M. A. Marinitch, “Corrosion resistance of B4C-MexBy composite materials”, alloys and compounds, Vol. 196, pp. 93-96, 1993.
[36] S. Sigl, “Processing and mechanical properties of boron carbide sintered with TiC”, European Ceramic Society, Vol. 18, pp. 1521-1529, 1998.
[37] H. M. Greenhouse, E. O. Accountius & H. H. Sisler, “High-temperature Reactions in the System Titanium Carbide—Boron Carbide1”, American Chemical Society, Vol. 73, pp. 5086-5087, 1951.
[38] obayashi, et al., “Formation and oxidation resistance of the coating formed on carbon material composed of B4C-SiC powders”, Carbon, Vol. 33, pp. 397-403, 1995.
[39] G. Itaru, T. Akashi & T. Goto, “Characterization of directionally solidified B4C-SiC composites prepared by a Floating Zone method”, Materials Transactions, Vol. 43, pp. 2309-2315, 2002.
[40] R. Doh-Hyung, et al., “Oxidation behaviour and strength of B4C-30wt%SiC composite materials”, materials science, Vol. 30, pp. 3897-3902, 1995.
[41] H. W. Kim, Y. H. Koh & H. E. kim, “Densification and Mechanical Properties of B4C with Al2O3 as a Sintering Addetives”, Ceram. Soc., Vol. 83, pp. 2363-65, 2000.
[42] Sh. Sun, T. Sakamoto, K. Nakai, H. Kurishita, S. Kobayashi, J. Y. Xu, H. Cao, B. Gao, X. Bian, W. Wua, G. F. Tu & S. Matsuda, “Microstructures and mechanical properties in B4C–CeO2 ceramics”, Nuclear Materials, Vol. 417, pp. 663-667, 2011.
[43] T. Sakamoto, Sh. Ch. Sun, T. Furuno, M. Kajioka, K. Nakai, H. Kurishita, S. Kobayashi, W. Y. Wub, G. F. Tu & S. Matsuda, “Microstructural analyses of B4C–CeO2 and B4C–La2O3 ceramics”, Nuclear Materials, Vol. 417, pp. 659-662, 2011.
[44] J. Lin & P. D. Ownby, “Physical Properties of Alumina-Boron Carbide Whisker/Particle Composite”, Ceram. Eng. Sci. Proc., Vol. 12, pp. 1245-53, 1991.
[45] S. Sigle & H. J. Kleebe, “Microcracking in B4C-TiB2 Composites”, Am. Ceram. Soc., Vol. 78, pp. 2374–2380, 1995.
[46] L. S. Sigle & K. Schewetz, “B4C-TiB2 Composite with Improved Fracture Resistance”, Int. Symp. Boron and Related Compounds, Tsukaba, Vol. 10, pp. 224-225, 1994.
[47] L. S. Sigle, “Microcrack Toughening in Brittle Materials Containing Weak and Strong Interface”, Acta. Matallurgica, Vol. 44, pp. 9, 1996.
[48] J. liu & P. D. Ownby, “Boron Carbide Reinforced Alumina Composites”, Am. Ceram. Soc., Vol. 74, pp. 674-679, 1991.
[49] V. V. Shorokhod, M. D. Vlajic & V. D. Kristic, “Pressureless Sintering of B4C – TiB2 Ceramic Composites”, Materials Science Forum, Vol. 282-283, pp. 219-224, 1998.
[50] S. Yamadaa, K. Hiraob, Y. Yamauchib & S. Kanzakib, “High Strength B4C–TiB2 Composites Fabricated by Reaction Hot-pressing”, Eur. Ceram. Soc., Vol. 23, pp. 1123-1130, 2003.