Effects of Silver Nanoparticles on Oxidative Stress in Adult Female Wistar Rats
Subject Areas : Journal of Animal BiologyN. Nowrozi 1 , E. Samani Jahromi 2 , S. Zolghadri Jahromi 3
1 - Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
2 - Young Researchers and Elite Club, Jahrom Branch, Islamic Azad University, Jahrom, Iran
3 - Young Researchers and Elite Club, Jahrom Branch, Islamic Azad University, Jahrom, Iran
Keywords: Antioxidant, silver nanoparticles, Rat, Glutathione peroxidase,
Abstract :
We aimed to evaluate the antioxidant effect of silver nanoparticles on oxidative stress in adult female of Wistar rats. In this experimental study, 50 adult female of Wistar rats were randomly divided into 5 groups. The control group (no treatment), sham group (0.2 mg/kg physiology serum), experimental group 1 (50 mg/kg isoniazid), experimental group 2 (50 mg/kg isoniazid and 0.25 mg/kg silver nanoparticles) and the experimental group 3 (50 mg/kg isoniazid and 0.5 mg/kg silver nanoparticles) were given. All injections were prescribed for 15 d and isoniazid and silver nanoparticles were injected in gavage and intraperitoneally, respectively. Then all animals were anesthetized and blooded. In the end, the data were examined by ANOVA test at a significance level of P<0.05 using SPSS software. Isoniazid increases nitric oxide, reduces glutathione peroxidase activity and total antioxidant capacity. While treating the animals with silver nanoparticles reduced the side effects of oxidant-induced by isoniazid, with decreasing nitric oxide, increased glutathione peroxidase and total antioxidant capacity by reducing nitric oxide production and increasing glutathione peroxidase activity oxidative, silver nanoparticle prevent from oxidative damages and the destruction of red blood cell (RBC) membrane. In other words, the tests showed the antioxidant role of silver nanoparticles as well.
- راشمزاد، م آ.، علیعسگری، ا. تفویضی، ف. 1394. بررسی مقایسهای اثر سمیت سلولی نانوذرات نقره بیولوژیکی و تجاری سنتز در سرطان معده در انسان و خطوط سلولهای فیبروبلاست ریه طبیعی. مجله دانشگاه علوم پزشکی تهران، سال 72، شماره 12، صفحات 807-799.
- رنجبر، آ. عطایی، ز. قاسمی، ح. حیدری، شایسته،ت. 1391. بررسی اثر نانوذرات نقره بر بیومارکرهای استرس اکسیداتیو کبد در موش صحرائی نر: اثر حفاظتی یا سمی؟ دومین کنفرانس ملی فناوری نانو از تئوری تا کاربرد.
- قربانی، ف. 1393. استفاده از نانوذرات نقره در پزشکی. توسعه فناوری نانو وب سایت ستاد.
- میرنجاد، ر. عرفانی، م. صادقی و پیران فر. 1391. اثر همافزایی نانوذرات نقره با استرپتومایسین بر بروسلا آبورتوس مقاوم به استرپتومایسین. مجله دانشگاه علوم پزشکی شهرکرد، سال 15، شماره 5، صفحات 79-72.
- Ballinger P., Brown B., Griffin M., Steven F., 1982. Evidence for carriage of silver by sulphadimidine: haemolysis of human erythrocytes. British Journal of Pharmacology, 77(1): 141-145.
- Binyu Y., 2011. Synthesis of Ag–TiO2 composite nano thin film for antimicrobial application. Nanotechnology, 22: 115-603.
- Chen D., Bai J., 2007. Biological effect induced by nanosilverparticles: in vivo study. Biomedical Materials, 2(3): S126-S128.
- Drake P.L., Hazelwood K.J., 2005. Exposure related health effects of silver and silver compound, a review. The Annals of Occupational Hygiene, 49: 575-585.
- Eom H.J., Choi J., 2010. P38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat T cells. Environmental science and Technology. 44(21):8337 -8342.
10. Gopinath P., Gogoi S.K., Sanpui P., Paul A., Chattopadhyay A., Ghosh S.S., 2010. Signaling gene cascade in silver nanoparticle induced apoptosis. Colloids and Surfaces B: Biointerfaces, 77(2): 240-245.
11.
Kwon T., Woo H.J., Kim Y.H., Lee H.J., Park K.H., Park S., 2012. Optimizing Hemocompatibility of Surfactant-Coated Silver Nanoparticles in Human Erythrocytes. Journal of Nanoscience and Nanotechnology, 12(8): 6168-6175.
12. Ling song X., Li B., Xu K., 2012. Citotoxicity of water-soluble Mpeg-SH-coated silver nanoparticles in HL-7702 cells. Cell Biology Toxicology, 28: 225-237.
13. Liu G., Men P., Harris P.L., Rolston R.K., Perry G., Smith M.A., 2006. Nanoparticle iron chelators: a new therapeutic approach in Alzheimer disease and other neurologic disorders associated with trace metal imbalance. Neuroscience Letters, 406(3): 189-193.
14. Long T.C., Saleh N., Tilton R.D., Lowry G.V., Veronesi B., 2006. Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environmental Science and Technology. 40(14):4346-4352.
15. Maneerung T., Tokura S., Ruiravanit R., 2008. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydrates Polymeres, 72(1): 43-51.
16. Melayie A., Youngs J.W., 2005. Silver and its application on antimicrobial agents. Expert Opinion on Therapeutic Patents, 15(2): 125-130.
17. Moncada S., Higgs A., 1993. The L-Arginine- Nitric Oxide pathway. The New England Journal of Medicine, 329(27): 2002-2012.
18. Nourooz-Zadeh J., Ziegler D., Sohr C., Betteridge J., Knight J., Hothersall J., 2006. The use of pholasin as a probe for the determination of plasma total antioxidant capacity. Clinical Biochemistry, 39(1): 55-61.
19. Oxford G.E., Tayari L., Barfoot M.D., Peck A.B., Tanaka Y., Humphereys-Beher M.G., 2000. Salivary EGF levels reduced in diabetic patients. Journal of Diabetes Complications, 14(3): 140-5.
20. Rastogi I.D., 2012. Nanotechnology: Safety paradigms. Journal of Toxicology and Environmental Health, 4(1): 1-12.
21. Robbins RA, Grisham MB. Molecules in focus: Nitric Oxide. Int J Biochem Cell B 1997; 29:857-860.
22. Stone V., Donaldson K., 2006. Nanotoxicology: signs of stress. Nature Nanotechnology, 1(1): 23-24.
23. Sun Y., Oberley L.W., Li Y., 1988. A simple method for clinical assay of superoxide dismutase. Clinical Chemistry, 34(3): 497-500.
24. Sundaramoorthi C., Devarasu S., 2011. Antimicrobial and wound healing activity of silver nanoparticles. International Journal of Pharmaceutical Research and Development. 2(12): 69-75.
25. Timmins G., Master S.H., Rusnak F., Deretic V., 2004. Nitric oxide generated from isoniazid activation by KatG: source of nitric oxide and activity against Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 8: 3006-3009.