بررسی عددی انتقال حرارت و جریان آرام نانوسیال آب-اکسید آلومینیم در میکروکانال مستطیلی دندانهدار
Subject Areas : Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineeringداود طغرایی 1 , آرش کریمی پور 2 , امید علی اکبری 3 , مجید زرین قلم 4 , حبیب اله عالیپور 5
1 - استادیار، دانشکده مهندسی مکانیک، دانشگاه آزاد اسلامی واحد خمینی شهر، ایران، اصفهان.
2 - استادیار، دانشکده مهندسی مکانیک، دانشگاه آزاد اسلامی واحد نجف آباد، ایران، اصفهان.
3 - باشگاه پژوهشگران جوان و نخبگان، واحد خمینی شهر، دانشگاه آزاد اسلامی، واحد خمینی شهر، ایران
4 - کارشناس ارشد، دانشکده مهندسی مکانیک، دانشگاه آزاد اسلامی واحد خمینی شهر، ایران، اصفهان
5 - کارشناس ارشد، دانشکده مهندسی مکانیک، دانشگاه آزاد اسلامی واحد خمینی شهر، ایران، اصفهان.
Keywords: friction factor, heat transfer, Nanofluid, rib-microchannel,
Abstract :
This paper numerically examines the laminar forced convection of a water–Al2O3 nanofluid flowing through a horizontal rib-microchannel. The middle section of the down wall microchannel is Affected by cold temperatures with a constant and uniform tempreture Tc. The middle section is also influenced by a transverse rib array. The effects of height rib in a two dimensional rib-microchannel on flow and heat transfer parameters of laminar water-Al2O3 nanofluid are investigated. The characteristics of this research are numerically investigated by the commercial software Fluent 6.3 in a Reynolds number as Re=10 and Re=100. Four different states of hight rib are analyzed. Higher conventional internal ribs or increasing the turbulators can significantly improve the performances of the convective heat transfer within a microchannel. It is seen that larger height rib and volume fraction of nanoparticles corresponds more heat transfer rate; however the added high ribs can cause a larger friction factor than that in the corresponding microchannel by constant height rib. At present article the effect of height rib on the fluid flow parameters are also studied for all different states of it. The results show that the microchannel performs better heat transfers at higher values of the Reynolds numbers. For all values of the Reynolds numbers and volume fraction of nanoparticles considered in this study, the average Nusselt number on the middle section surface of the microchannel increases as the solid volume fraction increases.
[1] Karimipour, A., Alipour, H., Akbari, O.A., Toghraie Semiromi, D. and Esfe, M.H, Studying the effect of indentation on flow parameters and slow heat transfer of water-silver nanofluid with vrying volume fraction in a rectangular Two-Dimensional microchannel. Indian Journal of Science and Technology, Vol 8(15), 5 1 7 07, July (2015).
[2] Nasiri, M., Etemad, S.Gh., Bagheri, R, Experimental heat transfer of nanofluid through an annular duct. International Communications in Heat and Mass Transfer, 38 (2011) 958–963.
[3] Karimipour, A., Nezhad, A.H., D’Orazio, A., Shirani, E, Investigation of the gravity effects on the mixed convection heat transfer in a microchannel using lattice Boltzmann method. Int. J. Therm. Sci. 54 (2012) 142-152.
[4] Choi, S.U.S., Nanofluids: from vision to reality through research, J. Heat Transf. 131 (2009) 1- 9.
[5] Webb, R.L., Advances in shell side boiling of refrigerants, J. Inst. Refrig. 87 (1991) 75-86.
[6] Webb, R.L., and Robertson, G.F., Shell-side evaporators and condensers used in the refrigeration industry, in: R. K. Shah, E. C. Subbarao, R.A. Mashelkar (Eds.), Heat Transfer Equipment Design, Hemisphere Pub. Corp, Washington, 1988, pp.559-570.
[7] Jaber, M.H., Webb, R.L., Stryker, P., An experimental investigation of enhanced tubes for steam condensers, ASME Paper, (1991) 1-8.
[8] Sunden, B., and Xie, G., Gas turbine blade tip heat transfer and cooling: a literature survey, Heat Transf. Eng, 31 (2010) 527-554.
[9] Karwa, R.S.C., Solanky, J., Saini, S., Thermo-hydraulic performance of solar air heaters having integral chamfered rib roughness on absorber plates, Energy, 26 (2001) 161-176.
[10] Lee, C. K., and Abdel Moneim, S. A., Computational analysis of heat transfer in turbulent flow past a horizontal surface with a 2-D ribs, Int. Commun. Heat Mass Transf, 26 (2001) 161-170.
[11] Wang, L., and Sunden, B., Experimental investigation of local heat transfer in a square duct with various-shaped ribs, Int. J. Heat Mass Transf. 43 (2006) 759-766.
[12] Saha, S. K., Thermal and friction characteristics of turbulent flow through rectangular and square ducts with transverse ribs and wire-coil inserts, Exp. Therm. Fluid Sci. 34 (2010) 575-589.
[13] Liou, T. M., Hwang, J. J., Chen, S.H., Simulation and measurement of enhanced turbulent heat transfer in a channel with periodic ribs on one principal wall, Int. J. Heat Mass Transf. 36 (1993) 507-517.
[14] Rau, G., Cakan, M., Moeller, D., Arts, T., The effect of periodic ribs on the local aerodynamic and heat transfer performance of a straight cooling channel, J. Turbomach. 120 (1998) 368-375.
[15] Manca, O., Nardini, S., Ricci, D., Numerical investigation of air forced convection in channels with differently shaped transverse ribs, Int. J. Numer. Method Heat Fluid Flow, 21 (2010) 618 639.doi:10.1108/09615531111135855.
[16] Park, B.C., Cho, Y.I., Hydrodynamic and heat transfer study of dispersed fl uids with submicron metallic oxide particles, Exp. Heat Transf, 11 (1998) 151-170.
[17] Maiga, S.E.B., Nguyen, C.T., Galanis, N., Roy, G., Heat transfer behaviours of nanofluids in a uniformly heated tube, Superlattices Microstruct. 35 (2004) 543.
[18] Izadi, M., Behzadmehr, A., Jalali-Vahida, D., Numerical study of developing laminar forced convection of a nanofl uid in an annulus, Int. J. Therm. Sci. 48 (2009) 2119-2129.
[19] Mahdy, A., Unsteady mixed convection boundary layer flow and heat transfer of nanofluids due to stretching sheet. Nuclear Engineering and Design, 249 (2012): 248-255.
[20] Aminossadati S. M., Ghasemi B., “Natural Convection Cooling of a Localised Heat Source at the Bottom of a Nanofluid-Filled Enclosure, European Journal of Mechanics B/Fluids, No. 28,2009, pp. 630-640.
[21] Brinkman, H.C. The Viscosity of Concentrated Suspensions and Solution, J. Chem. Phys. , vol. 20, pp. 571–581, 1952.
[22] Patel, H. E., Sundararajan, T., Pradeep, T., Dasgupta, A., Dasgupta, N., and Das, S.K.A Micro-Convection Model for Thermal Conductivity of Nanofluids, Pramana — J. Phys, vol. 65, no. 5, pp. 863–869, 2005