مدلسازی دینامیکی و شبیه سازی ارتعاشات غیرخطی تیر میکرونی پیزوالکتریک در حالت خود اندازه گیر میکروسکوپ نیروی اتمی
Subject Areas : Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering
1 - عضو هیأت علمی گروه مکانیک دانشگاه آزاد اسلامی واحد شهرکرد
2 - عضو هیأت علمی گروه مکانیک
دانشگاه آزاد اسلامی، واحد شهرکرد، شهرکرد، ایران.
Keywords: ارتعاش غیرخطی, میکرو تیر پیزوالکتریک, خود اندازهگیر, شارژ,
Abstract :
امروزه میکروسکوپ نیروی اتمی به عنوان ابزاری کارآمد در تعیین نیروهای بین مولکولی و توپوگرافی سطح با دقت نانومتری شناخته میشود. در این نوع میکروسکوپها، میکرو تیر به عنوان قلب میکروسکوپ شناخته میشود و به عنوان وسیله اندازهگیری بکار گرفته میشود. در بین میکرو تیرهای رایج در میکروسکوپ نیروی اتمی، میکرو تیرهای پیزوالکتریک نسل جدیدی از تیرها میباشند که با قابلیت خود محرک و خود اندازهگیر از محبوبیت بالایی در بین سایر تیرها برخوردار میباشند. هدف این مقاله بررسی رفتار میکرو تیر پیزوالکتریک با سر مثلثی در حالت خود اندازهگیر و در نزدیکی سطح نمونه می-باشد. در این حالت شارژ خروجی از لایه پیزوالکتریک و همچنین جریان خروجی از آن به عنوان عاملی موثر در اندازهگیری خمش محسوب میشوند. با نزدیک شدن میکرو تیر به سطح نمونه رفتار ارتعاشی آن غیرخطی میشود. مسلماً لایه پیزوالکتریک در حالت خود اندازهگیر زمانی میتواند به عنوان اندازهگیر مناسب تلقی شود که بتواند تاثیر نیروی غیرخطی برهمکنش بین نوک پراب و سطح نمونه را اندازهگیریهای خود نمایان کنند. به منظور بررسی این موضوع در ابتدا با استفاده از روش تقریبی گلرکین معادله دیفرانسیل حاکم بر حرکت ارتعاشی میکرو تیر پیزوالکتریک با سر مثلثی به معادله دیفرانسیل معمولی غیرخطی تبدیل میشود. سپس به کمک روش چند مقیاسی معادله دیفرانسیل غیرخطی به دست آمده حل میشود. پس از حل معادله دیفرانسیل حاکم بر مساله به شبیهسازی چگونگی رفتار میکرو تیر در حالت خود اندازهگیر در نزدیکی سطح نمونه پرداخته میشود و تاثیر عواملی چون فاصله تعادلی، مدهای نوسانی و جنس لایه پیزوالکتریک مورد بررسی قرار میگیرد.
[1] Vigneswaran N., Samsuri F., Ranganathan B., Recent Advances in Nano Patterning and Nano Imprint Lithography for Biological Applications, Procedia Engineering, 97, 2014, pp. 1387-1398.
[2] MuthukumarT., Prabhavathi S., Chamundeeswari M., Sastry T.P., Bio-modified carbon nanoparticles loaded with methotrexate possible carrier for anticancer drug delivery, Materials Science and Engineering: C, 36(1), 2014, pp. 14-19.
[3] Grayeli-Korpi A-R., Savaloni H., Habibi M., Corrosion inhibition of stainless steel type AISI 304 by Mn coating and subsequent annealing with flow of nitrogen at different temperatures, Applied Surface Science, 276(1), 2013, pp. 269-275.
[4] Jalili N., Laxminarayana K., A Review of Atomic Force Microscopy Imaging Systems: Application to Molecular Metrology and Biological Sciences, International Journal of Mechanics, 14 (8), 2004, pp. 907-914.
[5] Moosapour M., Hajabasi M.A., Ehteshami H., Thermoelastic damping effect analysis in micro flexural resonator of atomic force microscopy, Applied Mathematical Modelling, 38 (11-12), 2014, pp. 2716-2733.
[6] Kangarlou H., Aghgonbad M.M., Incidence angle dependence on structural and optical properties of UHV deposited copper nano layers, International Journal for Light and Electron Optics, 125(19), 2014, pp. 5532-5537.
[7] Adams J.D., Parrott G., Bauer C., Sant T., Manning L., Jones M., Rogers B., McCorkle D., Ferrel T.L, Nanowatt chemical vapor detection with a self-sensing, piezoelectric microcantilever array, Applied Physics Letters, 83, 2003, pp. 3428-3440.
[8] Salehi-Khojin A., Bashash S., Jalili N., Modeling and Experimental Vibration Analysis of Nanomechanical Cantilever Active Probes, Micromechanics and Microengineering, 18, 2008, 085008 (11pp).
[9] Liqun D., Guiryong K., Fumihito A., Toshio F., Kou-ichi I., Yasunori T., Structure design of micro to-uch sensor array, Sensors and Actuators A, 107, 2003, pp. 7-13.
[10] Korayem M.H., Ghaderi R., Sensitivity analysis of nonlinear vibration of AFM piezoelectric MC in liquid, International Journal of Mechanics and Materials in Design, 10(2), 2014, pp. 121–131.
[11] Rogers B., Manning L., Sulchek T., Adams J.D., Improving tapping mode atomic force microscopy with piezoelectric cantilevers, Ultramicroscopy, 100, 2004, pp. 267-276.
[12] Mahmoodi S.N., Jalili N., Non-linear vibrations and frequency response analysis of piezoelectrically driven microcantilevers, International Journal of Non-Linear Mechanics, 42, 2007, pp. 577-587.
[13] Wolf K., Gottlieb O., Nonlinear dynamics of a noncontacting atomic force microscope cantilever actuated by a piezoelectric layer, Journal of Applied Physics, 91(7),2002, pp. 4701-4712.
[14] Fung R.F., Huang S.C., Dynamic modeling and vibration analysis of the atomic force microscope, ASME Journal of Vibration and Acoustics, 123, 2001, pp. 502–509.
[15] Mahmoodi S.N., Dagag M.F., Jalili N., On the nonli-near-flexural response of piezoelectrically driven microcantilever sensors, Sens. and Act. A, 153, 2009, pp. 171-179.
[16] Mahmoodi S.N., Jalili N., Ahmadian M., Subharm-onics analysis of nonlinear flexural vibrations of piezoelectrically actuated microcantilevers, Nonlinear Dynamics, 59, 2010, pp. 397-409.
[17] Ghaderi R., Nejat A., Nonlinear Mathematical Modeling of Vibrating Motion of Nanomechanical Cantilever Active Probe, Latin American Journal of Solids and Structures, 11, 2014, pp. 369-385.
[18] Shin Ch., Jeon I., Khim Z.G., Hong J.W., Nam H.J., Study of sensitivity and noise in the piezoelectric self-sensing and self-actuating cantilever with an integrated Wheatstone bridge circuit, Review of Scientific Instruments, 81, 2010, 035109.
[19] Dong W., Lu X., Cui Y., Wang J., Liu M., Fabrication and characterization of microcantilever integrated with PZT thin film sensor and actuator, Thin Solid Films, 515, 2007, pp. 8544–8548.
[20] Itoh T., Suga T., Self-excited force sensing mic-rocantilevers with piezoelectric thin films for dynamic scanning force, Sensors and Actuators A: Physics, 54, 1996, pp. 477–481.
[21] Lee C., Itoh T., Suga T., Self-excited piezoelectric PZT microcantilevers for dynamic SFM-with inh-erent sensing and actuating capabilities, Sensors and Actuators A., 72, 1999, pp. 179–188.
[22] Korayem M.H., Ghaderi R., Vibration response of a piezoelectrically actuated microcantilever subjected to tip–sample interaction, Scientia Iranica B, 20 (1), 2013, pp. 195–206.