Environmental risk management associated with the development one of oil fields in southwestern Iran using AHP and FMEA methods
Subject Areas :Mahboobeh Cheraghi 1 , Abdolreza Karbassi 2 , Seyed Masoud Monavari 3 , Akbar Baghvand 4
1 - Department of Agricultural Management, Ahvaz Branch, Islamic Azad University, Ahvz, Irn.
2 - Associate Professor , Graduate Faculty of Environment,University of Tehran
3 - Department of Environmental Science, Faculty of Environment and Energy,Science and Research Branch, Islamic Azad University, Tehran, Iran.
4 - Associate Professor , Graduate Faculty of Environment,University of Tehran
Keywords:
Abstract :
Abd El-Razek M, Rezk M, Abd El-Aziz A, Senoon A. (2011). Analytical solution of seepage through earth dam with an internal core, Alexandria Engineering Journal, 50(1): 111-115.
Abhilasha PS, Antony Balan TG.(2014). Numerical Analysis of Seepage in Embankment Dams, IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE(,ICICE, 4: 13-23.
Bonelli S. (2009), Approximate solution to the diffusion equation and its application to seepage-related problems, Applied Mathematical Modelling, 33(1): 110-126.
Caffrey J, Bruch JR. (1979). Three-dimensional seepage through a homogeneous dam, Advances in Water Resources, 2: 167-176.
Chen JT, Hong HK, Chyuan SW. (1994). Boundary element analysis and design in seepage problems using dual integral formulation, Finite Elements in Analysis and Design, 17(1): 1-20.
Desai CS, Lightner JG, Somasundaram S. (1983). A numerical procedure for three-dimensional transient free surface seepage, Advances in Water Resources, 6(3): 175-181.
Didandeh A, Sadeghi Bigham B, Khosravian M. (2013). Farshad Bakhshandegan Moghaddam, Using Voronoi diagrams to solve a hybrid facility location problem with attentive facilities, Information Sciences, 234: 203-216.
Fletcher CAJ. (1991) Computational Techniques for Fluid Dynamics, Springer, Berlin, Germany, 2nd edition.
Fu J, Jin Sh. (2009). A study on unsteady seepage flow through dam, Journal of Hydrodynamics, Ser. B, 21(4): 499-504.
Fukuchi A.(2016). Numerical analyses of steady-state seepage problems using the interpolation finite difference method, Soil and Foundation, 56(4): :608–626.
Geiß D, Klein R, Penninger R, Rote ,G. (2014). Reprint of Optimally solving a transportation problem using Voronoi diagrams, Computational Geometry, 47(3): 499-506.
Gupta CS, Bruchjr JC, Comincioli V. (1986). Three dimensional unsteady seepage through an earth dam with accretion, Engineering Computations, 3(1): 1986.
Hasani H, Mamizadeh J, Karimi H. (2013). Stability of Slope and Seepage Analysis in Earth Fills Dams Using Numerical Models (Case Study: Ilam DAM-Iran), World Applied Sciences Journal, 21(9): 1398-1402.
Hashemi Nezhad R, Vosoughifar HR. (2011). Solution Arrangement Effect on Line-by-Line Method’s Accuracy in Analysis of dam’s Foundation, International Journal of Computational Methods, 8(3): 583–596.
Jie Y, Jie G, Mao Z, Li G. (2004). Seepage analysis based on boundary-fitted coordinate transformation method, Computers and Geotechnics, 31(4): 279-283.
Jie Y, Liu L, Xu W, Li G. (2013). Application of NEM in seepage analysis with a free surface, Mathematics and Computers in Simulation, 89: 23-37.
Jing T, Yongbiao L. (2012). Penalty Function Element Free Method to Solve Complex Seepage Field of Earth Fill Dam, IERI Procedia, 1(1): 117-123.
Kacimov A, Obnosov U. (2012). Analytical solutions for seepage near material boundaries in dam cores- The Davison–Kalinin problems revisited, Applied Mathematical Modelling, 36(3): 1286-1301.
Kazemzadeh-Parsi MJ, Daneshmand F. (2103). Three dimensional smoothed fixed grid finite element method for the solution of unconfined seepage problems, Finite Elements in Analysis and Design, 64: 24-35.
Li G, Ge J, Jie Y. (2003). Free surface seepage analysis based on the element-free method, Mechanics Research Communications, 30(1): 9-19.
Li Sh, Li Y, Si Zh, Zhang X. (2010). A seepage computational model of face slab cracks based on equi-width joint constant flow, Advances in Engineering Software, 41(7–8): 1000-1004.
Lin GF, Lai JS, Guo WD. (2003). Finite-volume component wise TVD schemes for 2D shallow water equations, Advances in Water Resources, 26(8): 861–873.
Liu J, Sun P, Liu F, Zhao M. (2014)., Design and optimization for bench blast based on Voronoi diagram, International Journal of Rock Mechanics and Mining Sciences, 66: 30-40.
Lu C, Qiu J, Wang R. (2010). A numerical study for the performance of the WENO schemes based on different numerical fluxes for the shallow water equations, Journal of Computational Mathematics, 28(6): 807–825.
Navas P, López-Querol S. (2013). Generalized unconfined seepage flow model using displacement based formulation, Engineering Geology, 166(8): 140-151.
Pellerin J, Lévy B, Caumon G, Botella A. (2014). Automatic surface remeshing of 3D structural models at specified resolution - A method based on Voronoi diagrams, Computers & Geosciences, 62: 103-116.
Prickett T. A. (1975). Modeling techniques for groundwater evaluation, Advances in Hydro science, 10: 1–143.
Qing-hui J, Shu-shen D, Chuang-bing Zh, Wen-bo L. (2010). Modeling Unconfined Seepage Flow Using Three Dimensional Numerical Manifold Method, Journal of Hydrodynamic, 22(4): 554-561.
Rafiezadeh K, Ataie-Ashtiani B. (2013). Seepage analysis in multi-domain general anisotropic media by three-dimensional boundary elements, Engineering Analysis with Boundary Elements, 37(3): 527-541.
Rafiezadeh K, Ataie-Ashtiani B. (2014). Transient free-surface seepage in three-dimensional general anisotropic media by BEM, Engineering Analysis with Boundary Elements, 46: 51-66.
Rusanov VV. (1961). The calculation of the interaction of non stationary shock waves with barriers, Journal of Computational and Mathematical Physics USSR, 1(1): 267–279.
Said BE, Ivanov D, Long AC, Hallett SR. (2016). Multi-scale modelling of strongly heterogeneous 3D composite structures using spatial Voronoi tessellation, journal of the Mechanics and Physics of Solids, 88: 50-71.
Shahrokhabadi Sh, Vahedifard F, Yarahmadian Sh. (2016). Integration of Thiele Continued Fractions and the method of fundamental solutions for solving unconfined seepage problems, Computers and Mathematics with Applications, 71(7): 1479-1490.
Tu W, Fang Zh, Li Q, Shaw ShL, Chen BY. (2014). A bi-level Voronoi diagram-based metaheuristic for a large-scale multi-depot vehicle routing problem, Transportation Research Part E, Logistics and Transportation Review, 61: 84-97.
Van Dam A, Zegeling PA, (2006). A robust moving mesh finite volume method applied to 1D hyperbolic conservation laws from magneto hydrodynamics, Journal of Computational Physics, 216( 2): 526–546.
Van Walsum PEV, Koopmans RWR. (1984). Steady two-dimensional groundwater seepage-numerical analysis in the φψ-plane, Journal of Hydrology, 72(3,4): 331-354.
Wang J, Kwan MP, Ma LB. (2014). Delimiting service area using adaptive crystal-growth Voronoi diagrams based on weighted planes: A case study in Haizhu District of Guangzhou in China, Applied Geography, 50: 108-119.
Yan DM, Wang W, Lévy B, Liu Y. (2013). Efficient computation of clipped Voronoi diagram for mesh generation, Computer-Aided Design, 45(4): 843-852.
Zhang J, Xu Q, Chen Z. (2001). Seepage analysis based on the unified unsaturated soil theory, Mechanics Research Communications, 28(1): 107-112.
Zheng H, Liu DF, Lee CF, Tham LG. (2005). A new formulation of Signorini’s type for seepage problems with free surfaces, International Journal for Numerical Methods in Engineering, 64(1): 1–16.
Zheng H, Liu F. (2015). Chunguang Li, Primal mixed solution to unconfined seepage flow in porous media with numerical manifold method, Applied Mathematical Modeling, 39(2): 794-808.
Zhu Y, Xu J, (2013). Improved algorithms for the farthest colored Voronoi diagram of segments, Theoretical Computer Science, 497: 20-30.