Subject Areas : International Journal of Smart Electrical Engineering
mohammad mehdi piroozmandan 1 , Fardad Farokhi 2 , Mohammad Ali Piroozmandan 3
1 - Computer engineering-artificial intelligence
2 - Department of ElectricalIslamic Azad University - Central Tehran Branch
3 - Department of Geology, Shiraz Branch, Islamic Azad University
Keywords:
Abstract :
[1] M.M.Piroozmandan, F.Farokhi, K.Kangarloo, M.Jahanshahi,” Removing High Density Impulse Noise via a Novel Two Phase Method Using Fuzzy Cellular Automata”, International Journal of Smart Electrical Engineering, (2021) 177 - 186.
[2] M.M.Piroozmandan, F.Farokhi, K.Kangarloo, M.Jahanshahi,” Removing the impulse noise from images based on fuzzy cellular automata by using a two-phase innovative method” ,Optik –International Journal for Light and Electron Optics , (2022) 168-713.
https://doi.org/10.1016/j.ijleo.2022.168713.
[3] W. Zhang, L. Jin , E. Song, X. Xu, “Removal of impulse noise in color images based on convolutional neural network”, Applied Soft Computing Journal,(2019) 105-558. https://doi.org/10.1016/j.asoc.2019.105558.
[4] J. Zhang, “An efficient median filter based method for removing random-valued impulse noise”, Digital Signal Process, (2010) 20:1010–8.
https://doi.org/10.1016/j.dsp.2009.11.003.
[5] L. Yin, R. Yang, M. Gabbouj , Y. Neuvo , “Weighted median filters: a tutorial”, IEEE Trans Circuits Syst II: Anal Digit Signal Process, (1996) 43:157–92.
[6] M.E. Celebi ,Y.A Aslandogan , “Robust switching vector median filter for impulsive noise removal”, J Electronic Imaging, (2008) 17:043006–43011. https://doi.org/10.1117/1.2991415.
[7] V.R.V Kumar ,S. Manikandan ,P.T Vanathi, “Adaptive window length recursive weighted median filter for removing impulse noise in images with details preservation”, Ecti Trans Elec Eng Electron Commun, (2008) 6:73–80.
[8] S. Akkoul, R. Ledee, R. Leconge, R. Harba, “A new adaptive switching median filter”, IEEE Signal Process Lett, (2010) 17:587–90.
[9]S.J. Ko, Y.H. Lee, “Center weighted median filters and their applications to image enhancement”, IEEE Trans. Circuits Syst. 38 (9) (1991) 984–993.
[10]H. Hwang, R.A. Haddad, “Adaptive median filters: new algorithms and results”, IEEE Trans. Image Process. 4 (4) (1995) 499–502.
[11]T. Chen, H.R. Wu, “Adaptive impulse detection using center weighted median filters”, IEEE Signal Process. Lett. 8 (1) (2001) 1–3.
[12]G.R. Arce, J.L. Paredes, “Recursive weighted median filters admitting negative weights and their optimization”, IEEE Trans. Signal Process. 48 (3) (2000) 768–779.
[13]X. Wang, X.Q. Zhao, F.X. Guo, J.F. Ma, “Impulsive noise detection by double noise detector and removal using adaptive neural-fuzzy inference system”, Int J. Electron Commun. (AEU) 65 (5) (2010) 429–439.
https://doi.org/10.1016/j.aeue.2010.06.004.
[14]M.E. Yuksel, A. Bastrk, “Efficient removal of impulse noise from highly corrupted digital images by a simple neuro-fuzzy operator”, AEU Int. J. Electron. Commun. 57 (3) (2003) 214–219.
https://doi.org/10.1078/1434-8411-54100164.
[15]M.T. Yildirim, A. Basturk, M.E. Yuksel, “Impulse noise removal from digital images by a detail-preserving filter based on type-2 fuzzy logic”, IEEE Trans. Fuzzy Syst. 16 (4) (2008) 920–928, 920–228.
[16] K.K.V. Toh , I. NAM , Noise adaptive fuzzy switching median filter for salt-and-pepper noise reduction. IEEE Sig Process Lett , (2010) 17(3):281–4 .
[17] V. Gregori, S. Morillas, B. Roig, Almanzor Sapena, “Fuzzy averaging filter for impulse noise reduction in color images with a correction step”, J. Vis. Commun. Image Represent, (2018) 518–528.
https://doi.org/10.1016/j.jvcir.2018.06.025.
[18] V.P. Ananthi, P. Balasubramaniam,” A new image denoising method using interval-valued intuitionistic fuzzy sets for the removal of impulse noise”, Signal Process, (2016) 81–93.
https://doi.org/10.1016/j.sigpro.2015.10.030.
[19]S. Ulam,” Some ideas and prospects in biomathematics”, Annu. Rev. Biophys. Bioeng. 1 (1972) 277–292.
[20] J.V. Neumann, “Theory of Self-Reproducing Automata”, University of Illinois Press, 1966, pp. 63–87.
[21]S. Wolfram, “Computation theory of cellular automata, Commun”. Math. Phys. 96 (1984) 15–57.
[22]U. Sahin, S. Uguz, F. Sahin, Salt and pepper noise filtering with fuzzy-cellular automata, Comput. Electr. Eng. 40 (1) (2014) 59–69.
https://doi.org/10.1016/j.compeleceng.2013.11.010.
[23]G. Cattaneo, P. Flocchini, G. Mauri, C.Q. Vogliotti, N. Santoro, “Cellular automata in fuzzy backgrounds, Phys. D Nonlinear Phenom”, 105 (1–3) (1997) 105–120.
https://doi.org/10.1016/S0167-2789(96)00233-3.
[24]P.L. Rosin, “Image processing using 3-state cellular automata”, Comput. Vis. Image Underst. 114 (7) (2010) 790–802.
https://doi.org/10.1016/j.cviu.2010.02.005.
[25]S. Sadeghi, A. Rezvanian, E. Kamrani, “An efficient method for impulse noise reduction from images using fuzzy cellular automata”, AEU Int. J. Electron. Commun. 106 (9) (2012) 772–779.
https://doi.org/10.1016/j.aeue.2012.01.010.
[26] E. Besdok, P. Civicioglu, M. Alci, “Using an adaptive neuro-fuzzy inference system based interplant for impulsive noise suppression from highly distorted images”, Fuzzy Sets Syst (2005) 150:525–43.
[27] J. Jang, “Anfis: adaptive-network-based fuzzy inference system”, IEEE Trans Systems Man Cybern (1993) 23:665–85.
[28] MathWorks: Matlab, fuzzy logic toolbox, user’s guide. New York: The Math Works Inc.; (2002).
[29]T. Veerakumar, B.N. Subudhi, S.L. Esakkirajan, P.K. Pradhan, “Context model based edge preservation filter for impulse noise removal”, Expert Syst. Appl, (2017) 29–44.
https://doi.org/10.1016/j.eswa.2017.06.033.
[30]S. Schulte, W.V. De, M. Nachtegael, D.V.D. Weken, E.E. Kerre,” Fuzzy random impulse noise reduction method”, Fuzzy Sets Syst. 158 (3) (2007) 270–283.
https://doi.org/10.1016/j.fss.2006.10.010.
[31]H. Deng, Q. Zhang, X. Song, J. Tao, “A decision-based modified total variation diffusion method for impulse noise removal”, Hindawi Comput. Intell. Neurosci,(2017), 2024396.
[32] ZH. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, “Image quality assessment: from error visibility to structural similarity”, IEEE Trans Image Process,2004.
[33] X. Li, T. sun, “Mixed Gaussian-impulse noise removal using non-convex high-order TV penalty”, Applied Numerical Mathematics,(2024) 114614.
https://doi.org/10.1016/j.cam.2022.114615.
[34] X. Zeng,R. Lv, S. Li, “The maximum a posteriori estimation model for signal recovery with mixed Gaussian and impulse noise”, Applied Mathematics Letters,(2024), https://doi.org/10.1016/j.aml.2023.108859.
[35] R. Li, B. Zheng, “A spatially adaptive hybrid total variation model for image restoration under Gaussian plus impulse noise”, Applied Mathematics and Computation,(2022), https://doi.org/10.1016/j.amc.2021.126862.
[36]CH. Zhang, K. Wang,” A switching median–mean filter for removal of high-density impulse noise from digital images”, Optik, (2015) 956–961, https://doi.org/10.1016/j.ijleo.2015.02.085.
[37] X. Liu, T. Sun,” Mixed Gaussian-impulse noise removal using non-convex high-order TV penalty”, Applied Numerical Mathematics,201 (2024) Pages 72-84, https://doi.org/10.1016/j.apnum.2024.02.012.
[38] C.J.J Sheela, G. Suganthi, “An efficient denoising of impulse noise from MRI using adaptive switching modified decision based unsymmetric trimmed median filter”, Biomedical Signal Processing and Control, 55 (2020) Pages 101657 ,https://doi.org/10.1016/j.bspc.2019.101657.
[39] V. Gregori, S. Morillas, B. Roig, Almanzor Sapena, “Fuzzy averaging filter for
impulse noise reduction in color images with a correction step”, J. Vis.
Commun. Image Represent. 55 (2018) 518–528. https://doi.org/10.1016/j.jvcir.2018.06.025.
[40] V.P. Ananthi, P. Balasubramaniam,” A new image denoising method using
interval-valued intuitionistic fuzzy sets for the removal of impulse noise”,
Signal Process. 121 (2016) 81–93. https://doi.org/10.1016/j.sigpro.2015.10.030
[41] N.U. Khan, K. V. Arya, “A new fuzzy rule based pixel organization scheme
for optimal edge detection and impulse noise removal”, Multimedia Tools and Applications, 79 (2020), https://doi.org/10.1007/s11042-020-08707-x.
[42] U. Erkan, L. Gökrem, S. Enginoglu, Different applied median filter in salt and pepper noise, Comput. Electr. Eng. 70 (2018) 789–798.
http://dx.doi.org/10.1016/j.compeleceng.2018.01.019.
[43] K. Vasanth, R. Varatharajan, An adaptive content based closer proximity pixel replacement algorithm for high density salt and pepper noise removal in images, J. Ambient Intell. Humaniz. Comput. (2020) http://dx.doi.org/10.1007/s12652-020-02376-2.
[44] B. Karthik, T. Krishna Kumar, S.P. Vijayaragavan, M. Sriram, Removal of high density salt and pepper noise in color image through modified cascaded filter, J. Ambient Intell. Humaniz. Comput. 12 (3) (2021) 3901–3908, http://dx.doi.org/10.1007/s12652-020-01737-1.
[45] A. Roy, R.H. Laskar, Multiclass SVM based adaptive filter for removal of high density impulse noise from color images, Appl. Soft Comput. 46 (2016) 816–826, http://dx.doi.org/10.1016/j.asoc.2015.09.032.
[46] M. González-Hidalgo, S. Massanet, A. Mir, D. Ruiz-Aguilera, Improving salt and pepper noise removal using a fuzzy mathematical morphology-based filter, Appl. Soft Comput. 63 (2018) 167–180, http://dx.doi.org/10.1016/j.asoc.2017.11.030.
[47] S. Enginoğlu, U. Erkan, S. Memiş, Adaptive cesáro mean filter for saltand- pepper noise removal, El-Cezeri J. Sci. Eng. 7 (1) (2020) 304–314,
http://dx.doi.org/10.31202/ecjse.646359.
[48] B. Garg, K.V. Arya, Four stage median-average filter for healing high density salt and pepper noise corrupted images, Multimedia Tools Appl. 79 (43) (2020) 32305–32329, http://dx.doi.org/10.1007/s11042-020-09557-3.