Analysis of cylindrical shell vibrations of MRI machine using finite element method.
Subject Areas : Journal of New Applied and Computational Findings in Mechanical Systems
1 -
Keywords: MRI, Cylindrical shell, Vibrating surfaces, Micro perforated panel.,
Abstract :
Magnetic resonance imaging is one of the non-invasive medical imaging methods based on magnetic fields and radio waves. This study focuses on reducing acoustic noise inside the cylindrical of the MRI scanner in which the patient is placed. The wall of the scanner half-tunnel is usually connected to the spiral gradient cylinder, which causes some vibrations to be transmitted to the wall, resulting in the generation of sound waves. One of the possible solutions to manage the noise from the scanner half-tunnel wall or the transmission noise from the spiral gradient cylinder is to design an additional panel absorber between the gradient cylinder and the scanner half-tunnel wall. In this study, with the help of modeling in ANSYS software, it was shown that numerical analysis of gradient cycles can accurately investigate vibration and noise levels based on sound analysis. The results showed that using a microporous panel absorber with a thickness of 20 mm provides transmission losses in the frequency range of 125 Hz to 3 kHz in the amount of 15 to 37 dB. Considering that the MRI device is one of the most popular and widely used imaging devices, many manufacturing companies are looking to improve and control these vibrations. Therefore, the results of this study can be a useful guide for MRI machine manufacturing companies to improve their performance and efficiency.
[1] Soedel, W., (2004). Vibrations of shells and plates. CRC Press.
[2] Taracila, V., Edelstein, W. A., Kidane, T. K., Eagan, T. P., Baig, T. N., Brown, R. W., (2005). Analytical calculation of cylindrical shell modes: Implications for MRI acoustic noise. Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering: An Educational Journal, 25(1), pp 60-64.
[3] Shao, W., Mechefske, C. K., (2005). Analysis of the sound field in finite length infinite baffled cylindrical ducts with vibrating walls of finite impedance. The Journal of the Acoustical Society of America, 117(4), pp 1728-1736.
[4] Li, G., Mechefske, C. K., (2009). Structural–acoustic modal analysis of cylindrical shells: application to MRI scanner systems. Magnetic Resonance Materials in Physics, Biology and Medicine, 22, pp 353-364.
[5] Mechefske, C. K., Wang, F., (2006). Theoretical, numerical, and experimental modal analysis of a single-winding gradient coil insert cylinder. Magnetic Resonance Materials in Physics, Biology and Medicine, 19, pp 152-166.
[6] Edelstein, W. A., Hedeen, R. A., Mallozzi, R. P., El-Hamamsy, S. A., Ackermann, R. A., Havens, T. J., (2002). Making MRI quieter. Magnetic Resonance Imaging, 20(2), pp 155-163.
[7] Mechefske, C. K., Wu, Y., Rutt, B. K., (2002). MRI gradient coil cylinder sound field simulation and measurement. J. Biomech. Eng., 124(4), pp 450-455..
[8] Yao, G. Z., Mechefske, C. K., Rutt, B. K., (2004). Characterization of vibration and acoustic noise in a gradient-coil insert. Magnetic Resonance Materials in Physics, Biology and Medicine, 17, pp 12-27.
[9] Wang, Y., Liu, F., Crozier, S., (2015). Simulation study of noise reduction methods for a split MRI system using a finite element method. Medical Physics, 42(12), pp 7122-7131.
[10] Wang, Y., Liu, F., Weber, E., Tang, F., Jin, J., Tesiram, Y., Crozier, S., (2015). Acoustic analysis for a split MRI system using FE method. Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering, 45(2), pp 85-96.
[11] Winkler, S. A., Alejski, A., Wade, T., McKenzie, C. A., Rutt, B. K., (2017). On the accurate analysis of vibroacoustics in head insert gradient coils. Magnetic resonance in medicine, 78(4), pp 1635-1645.
[12] Sakhr, J., Chronik, B. A., (2019). Vibrational response of a MRI gradient coil cylinder to time-harmonic Lorentz-force excitations: An exact linear elastodynamic model for shielded longitudinal gradient coils. Applied Mathematical Modelling, 74, pp 350-372..
[13] Sakhr, J., Chronik, B. A., (2021). Parametric modeling of steady-state gradient coil vibration: resonance dynamics under variations in cylinder geometry. Magnetic Resonance Imaging, 82, pp 91-103.
[14] McJury, M. J., (1995). Acoustic noise levels generated during high field MR imaging. Clinical Radiology, 50(5), pp 331-334.
[15] McJury, M. J., (2022). Acoustic noise and magnetic resonance imaging: a narrative/descriptive review. Journal of Magnetic Resonance Imaging, 55(2), pp 337-346.
[16] McJury PhD, M., Shellock PhD, F. G., (2000). Auditory noise associated with MR procedures: a review. Journal of Magnetic Resonance Imaging, 12(1), pp 37-45.
[17] Cho, Z. H., Park, S. H., Kim, J. H., Chung, S. C., Chung, S. T., Chung, J. Y., Wong, E. K., (1997). Analysis of acoustic noise in MRI. Magnetic resonance imaging, 15(7), pp 815-822.
[18] Mechefske, C. K., Geris, R., Gati, J. S., Rutt, B. K., (2001). Acoustic noise reduction in a 4 T MRI scanner. Magnetic Resonance Materials in Physics, Biology and Medicine, 13, pp 172-176.
[19] Cho, Z. H., Chung, S. T., Chung, J. Y., Park, S. H., Kim, J. S., Moon, C. H., Hong, I. K., (1998). A new silent magnetic resonance imaging using a rotating DC gradient. Magnetic resonance in medicine, 39(2), pp 317-321.
[20] Crémillieux, Y., Wheeler‐Kingshott, C. A., Briguet, A., Doran, S. J., (1997). STEAM‐Burst: a single‐shot, multi‐slice imaging sequence without rapid gradient switching. Magnetic resonance in medicine, 38(4), pp 645-652.
[21] Goldman, A. M., Gossman, W. E., Friedlander, P. C., (1989). Reduction of sound levels with antinoise in MR imaging. Radiology, 173(2), pp 549-550.
[22] McJury, M., Stewart, R. W., Crawford, D., Toma, E., (1997). The use of active noise control (ANC) to reduce acoustic noise generated during MRI scanning: some initial results. Magnetic resonance imaging, 15(3), pp 319-322.
[23] Chen, C. K., Chiueh, T. D., Chen, J. H., (1999). Active cancellation system of acoustic noise in MR imaging. IEEE transactions on biomedical engineering, 46(2), pp 186-191.
[24] Li, M., Lim, T. C., Lee, J. H., (2008). Simulation study on active noise control for a 4-T MRI scanner. Magnetic resonance imaging, 26(3), pp 393-400.
[25] Li, M., Rudd, B., Lim, T. C., Lee, J. H., (2011). In situ active control of noise in a 4 T MRI scanner. Journal of Magnetic Resonance Imaging, 34(3), pp 662-669.
[26] Chambers, J., Bullock, D., Kahana, Y., Kots, A., Palmer, A., (2007). Developments in active noise control sound systems for magnetic resonance imaging. Applied Acoustics, 68(3), pp 281-295.
[27] Mustafa, B. A. J., Ali, R., (1989). An energy method for free vibration analysis of stiffened circular cylindrical shells. Computers & structures, 32(2), pp 355-363.