Structural and electronical studies of asymmetric tetradentate Schiff base ligands and their Ni(II) and Cu(II) complexes using density functional theory
Subject Areas : OthersNooshin Keshtkar 1 , Alison Zamanpour 2 , Sheida Esmaielzadeh 3
1 - Department of Chemistry, Firoozabad Branch, Islamic Azad University, Firoozabad, Iran
2 - Department of Chemistry, Firoozabad Branch, Islamic Azad University, Firoozabad, Iran
3 - Department of Chemistry, Darab branch, Islamic Azad University, Darab, Iran
Keywords: Asymmetrical Schiff base ligand, Nickle and copper complexes, DFT, Natural bond orbital analysis.,
Abstract :
Four tetradentate asymmetric Schiff base ligands synthesized from salicylaldehyde derivatives and half units of methyl-2-(N-2-aminoethane)amino-1-cyclopentene dithiocarboxylate series and their Ni(II) and Cu(II) complexes with NNOS coordination sphere was studied theoretically using density functional theory (DFT) at the B3LYP/(LANL2DZ/6-311G**) level. Optimization calculations, vibrational frequencies of the infrared region, frontier molecular energies and natural bond orbital analysis were performed for all Schiff base compounds with Gaussian 09 program package. For all compounds under study the EHOMO and ELUMO are negative indicating that the prepared Schiff base compounds are stable. The comparison of energy gap (Eg) values of the ligands and their complexes indicating the good reactivity of the ligands and the good stability of the complexes because Eg in free Schiff base ligand is smaller than the complexes. The obtained Eg results of the optimized complexes suggest the copper complexes have a higher energy gap which is more stable than the nickel complexes. This result support the experimental formation constant. Also, Global descriptors reactivity descriptors including hardness, softness, dipole moment and electrophilicity expressed the stability of the compounds. The DFT results showed that proposed structure and stability in ligands and their complexes are in accord with the experimental outcomes.
[1] R. Kumar, A. Abha Singh, U. Kumar, P. Jain, A. Kumar Sharma, C. Kant, M. D. Faizi. J. Mol. Struct. 1294(2), 136346 (2023).
[2] M. Choudhary. J. Mol. Struct. 1263, 133114 (2022).
[3] Q.U.A. Sandhu, M. Pervaiz, A. Majid, U. Younas, Z. Saeed, A. Ashraf, S. Jelani. J. Coord. Chem. 76, 1094 (2023).
[4] B. Kumar, J. Devi, A. Manuja. Res. Chem. Intermediates 49(6), 2493 (2023)
[5] T. Alorini, A.N. Al-Hakimi, I. Daoud, F. Alminderej, A.E. Albadri, L. Aroua. J. Biomol. Struct. Dyn. 41(20), 10984 (2023).
[6] P. Devi, K. Singh, B. Kubavat. Results Chem. 5, 100813 (2023).
[7] A. Catalano, M.S. Sinicropi, D. Iacopetta, J. Ceramella, A. Mariconda, C. Rosano, E. Scali, C. Saturnino, P. Longo. Appl. Sci. 11(13), 6027 (2021).
[8] M.O. Ahmed, A. Shrpip, M. Mansoor. Processes 8(2), 246 (2020).
[9] Sh. Esmaielzadeh, G. Mashhadiagha. Bull. Chem. Soc. Ethiop. 31(1), 159 (2017).
[10] T. Alorini, I. Daoud, A.N. Al-Hakimi, F. Alminderej, A.E. Albadri. Res.Chem. Intermed. 49(4), 1701 (2023).
[11] M. Fallah-Mehrjardi, H. Kargar, R. Behjatmanesh-Ardakani, M. Ashfaq, K.S. Munawar, M.N. Tahir. J. Mol. Struct. 1251, 132037 (2022).
[12] M. Rocha, M.C. Ruiz, G.A. Echeverría, O.E. Piro, A.L. Di Virgilio, I.E. León, D.M. Gil. New J. Chem. 43(47), 18832 (2019).
[13] A.D. Becke, J. Chem. Phys.98 (7), 5648 (1993).
[14] M. J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, J.T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J. B. Foresman, J.V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, D.J. Fox, GAUSSIAN09, revision A.02, Gaussian, Inc.: Wallingford, CT, (20049).
[15] W.J. Hehre, R. Ditchfield, J.A. Pople. J. Chem. Phys.56 , 2257 (1972).
[16] P.J. Hay, W.R. Wadt, J. Chem. Phys. 82,270 (1985).
[17] Sh. Esmaielzadeh, L. Azimian, Kh. Shekoohi, H. Esfandiari, M. Asadi, Z. Zare, A. Rahmani nejad, Kh. Mohammadi. Inorg. Chim. Acta 405, 155 (2013).
[18] Gh. Grivani, S. Husseinzadeh Baghan, M. Vakili, A. Dehno Khalaji, V. Tahmasebi, V. Eigner, M. Dušek. J. Mol. Struct. 1082, 91 (2015).
[19] M. Asadi, Kh. Mohammadi, Sh. Esmaielzadeh, B. Etemadi, H. K. Fun, Inorg. Chim. Acta 362, 4913 (2009).
[20] N. Kumar Chaudhary, P. Mishra, Ame. J. Appl. Chem. 2, 19 (2014).
[21] A. A. Khandar, Ch. Cardin, S. A. Hosseini- Yazdi, J. McGrady, M. Abedi, S. A. Zarei, Y. Gan. Inorg. Chim. Acta 363, 4080 (2010).
[22] Z. Asgharpour, F. Farzaneh, A. Abbasi, M. Ghiasi, Polyhedron 101, 282 (2015).
[23] M.A. El-Ghamry, F.M. Elzawawi, A.A.A. Aziz, K.M. Nassir, S.M. Abu-El-Wafa. Sci. Rep. 12(1), 17942 (2022).
[24] T.M. Al-Shboul, M. El-khateeb, Z.H. Obeidat, T.S. Ababneh, S.S. Al-Tarawneh, M.S. Al Zoubi, T.M. Jazzazi. Inorganics 10(8), 112 (2022).
[25] J. Saranya, S. Jone Kirubavathy, S. Chitra, A. Zarrouk, K. Kalpana, K. Lavanya, B. Ravikiran. Arab. J. Sci. Eng. 45(6), 4683 (2020).
[26] F.M. Alkhatib, H.M. Alsulami. Heliyon, 9, e18988 (2023).
[27] J. Szklarzewicz, A. Jurowska, M. Hodorowicz, R. Gryboś, K. Kruczała, M. Głuch-Lutwin, G. Kazek. J. Coord. Chem. 73(6), 986 (2020).
[28] B. Naureen, G.A. Miana, K. Shahid, M. Asghar, S. Tanveer, A. Sarwar. J. Mole. Struct. 1231, 129946 (2021).
[29] N. Keshtkar, A. Zamanpour, Sh. Esmaielzadeh. Inorg. Chim. Acta 541, 121083 (2022).
[30] M. Asadi, Kh. Mohammadi, Sh. Esmaielzadeh, B. Etemadi, H. K. Fun, Polyhedron 28, 1409 (2009).
[31] A.Z. El.Sonbati, M.A. Diab, A.A. El-Bindary, M.I. Abou-Dobara, H.A. Seyam. J. Mole. Liq. 218, 434 (2016).
[32] T. Koopmans. Physica 1, 104 (1934).
[33] A.A. Khandar, C.h. Cardin, S.A. Hosseini-Yazdi, J. McGrady, M. Abedi, S.A. Zarei, Y. gan. Inorg. Chim. Acta 363, 4080 (2010).
[34] H.G. Sogukomerogullari, T.T. Tok, F. Yilmaz, ˙I. Berber, M. Sonmez, Turk. J. Chem. 39 497 (2015).
[35] M. Amirnasr, M. Bagheri, H. Farrokhpour, K.J. Schenk, K. Mereiter, P.C. Ford, Polyhedron 71, 1 (2014).