An Improved Non-Overlapping Reluctance Resolver Under Eccentricity Faults
Subject Areas : Power EngineeringDavood Karamalian 1 , Behrooz Majidi 2 , Mohamadreza Moradian 3 , Khoshnam Shojaei 4 , Sayyed Mohammad Mehdi Mirtalaei 5
1 - Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
2 - Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
3 - Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
4 - Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
5 - Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
Keywords: Reluctance resolvers, Eccentricity faults, Non-overlapping, Finite element method,
Abstract :
In this article, an improved model of reluctance resolvers for accurate angular position detection in the presence of static, dynamic and mixed eccentricity faults is presented. In order to improve the accuracy of the resolver, first, a reference non-overlapping reluctance resolver is introduced and simulated. Various types of eccentricity faults are then implemented mathematically in the Maxwell software. The resolver's performance under different eccentricity faults is simulated, and the fault with the greatest impact on the accuracy is selected. Next, proposed resolver's tooth dimensions are parametrically defined using parameters α and β, and sensitivity analysis is performed using FEM. The optimal values of these two parameters are obtained by comparing the simulations’ results. Subsequently, the resolver with optimized dimensions is presented, and its performance is evaluated in the absence of the faults. The output characteristics of this resolver confirm its performance accuracy under normal conditions. Furthermore, the resolver is simulated under different eccentricity faults, and more precise performance is validated as well. Due to the same size and excitation for both conventional and proposed models, this model can replace the conventional ones in all industries.
[1] L. Karami, A. Ahmarinejad, M. Hosseini Aliabadi, and A. Dana, “A tri-level optimization model for utilizing the potential of IoT-based subscribers and electric vehicles in energy and ancillary services markets,” Technovations of Electrical Engineering in Green Energy System, vol. 2, no. 4, pp. 82–107, 2024, doi: 10.30486/teeges.2023.1990126.1079.
[2] H. Ghadiri and H. Khodadadi, “Position Control of an Electrohydraulic Servo System Based on Sliding Mode Adaptive Fuzzy Controller,” Technovations of Electrical Engineering in Green Energy System, vol. 2, no. 3, pp. 13–35, 2023, doi: 10.30486/teeges.2023.1981036.1066.
[3] S. Shimahara, “Resolver.” Google Patents, Jan. 16, 2024.
[4] R. Ni, Y. Cai, S. Gu, S. Nie, and X. Wu, “Improved Analytical Analysis of Novel Integrated Variable Reluctance Resolver for Compact Machine Topology,” IEEE Transactions on Industrial Electronics, vol. 69, no. 12, pp. 12600–12609, 2022, doi: 10.1109/TIE.2021.3131798.
[5] L. Xiao, Z. Li, and C. Bi, “An Optimization Approach to Variable Reluctance Resolver,” IEEE Trans Magn, vol. 56, no. 2, Feb. 2020, doi: 10.1109/TMAG.2019.2953255.
[6] X. Ge, Z. Q. Zhu, R. Ren, and J. T. Chen, “A Novel Variable Reluctance Resolver for HEV/EV Applications,” IEEE Trans Ind Appl, vol. 52, no. 4, pp. 2872–2880, 2016, doi: 10.1109/TIA.2016.2533600.
[7] X. Ge and Z. Q. Zhu, “A Novel Design of Rotor Contour for Variable Reluctance Resolver by Injecting Auxiliary Air-Gap Permeance Harmonics,” IEEE Transactions on Energy Conversion, vol. 31, no. 1, pp. 345–353, 2016, doi: 10.1109/TEC.2015.2470546.
[8] H. Saneie, Z. Nasiri-Gheidari, and F. Tootoonchian, “The influence of winding’s pole pairs on position error of linear resolvers,” in 2017 Iranian Conference on Electrical Engineering (ICEE), 2017, pp. 949–954. doi: 10.1109/IranianCEE.2017.7985176.
[9] H. Saneie and Z. Nasiri-Gheidari, “Generalized Nonoverlapping Tooth Coil Winding Method for Variable Reluctance Resolvers, ” IEEE Transactions on Industrial Electronics, vol. 69, no. 5, pp. 5325-5332, May 2022, doi: 10.1109/TIE.2021.3084157.
[10] Z. Nasiri‐Gheidari, F. Tootoonchian, and F. Zare, “Design oriented technique for mitigating position error due to shaft run‐out in sinusoidal‐rotor variable reluctance resolvers,” IET Electr Power Appl, vol. 11, no. 1, pp. 132–141, 2017, dio: 10.1049/iet-epa.2016.0316.
[11] F. Zare, Z. Nasiri-Gheidari, and F. Tootoonchian, “The effect of winding arrangements on measurement accuracy of sinusoidal rotor resolver under fault conditions,” Measurement, vol. 131, pp. 162–172, 2019, doi: 10.1016/j.measurement.2018.08.074.
[12] R. Ghandehari, P. Naderi, and L. Vandevelde, “Performance Analysis of a New Type PM-Resolver in Healthy and Eccentric Cases by an Improved Parametric MEC Method,” IEEE Trans Instrum Meas, vol. 70, pp. 1–10, 2021, doi: 10.1109/TIM.2021.3080388.
[13] M. S. KhajueeZadeh, M. Emadaleslami, F. Tootoonchian, A. Daniar, M. C. Gardner and B. Akin, "Comprehensive Investigation of the Resolver’s Eccentricity Effect on the Field-Oriented Control of PMSM," in IEEE Sensors Journal, vol. 23, no. 17, pp. 19145-19152, 1 Sept.1, 2023, doi: 10.1109/JSEN.2023.3292896.
[14] M. Emadaleslami, M. KhajueeZadeh and F. Tootoonchian, "Static Eccentricity Fault Location Diagnosis in Resolvers Using Siamese-Based Few-Shot Learning," in IEEE Transactions on Instrumentation and Measurement, vol. 72, pp. 1-9, 2023, Art no. 9004209, doi: 10.1109/TIM.2023.3298404.
[15] J. Faiz and M. Ojaghi, “Different indexes for eccentricity faults diagnosis in three-phase squirrel-cage induction motors: A review,” Mechatronics, vol. 19, no. 1, pp. 2–13, 2009, doi: 10.1016/j.mechatronics.2008.07.004.
[16] M. KhajueeZadeh and F. Tootoonchian, "Axial Flux Resolver Versus Radial Flux One From Fault Tolerability Point of View," in IEEE Sensors Journal, vol. 23, no. 17, pp. 19176-19183, 1 Sept.1, 2023, doi: 10.1109/JSEN.2023.3296746.
[17] L. Sun, Z. Luo, J. Hang, S. Ding, and W. Wang, “A Slotless PM Variable Reluctance Resolver With Axial Magnetic Field,” IEEE Transactions on Industrial Electronics, vol. 69, no. 6, pp. 6329–6340, 2022, doi: 10.1109/TIE.2021.3090704.
[18] A. Moheyseni, Z. Nasiri-Gheidari, and R. Alipour-Sarabi, “Slotless Disk Type Resolver: A Solution to Improve the Accuracy of Multi-Speed Wound Rotor Resolvers,” IEEE Transactions on Transportation Electrification, vol. 8, no. 1, pp. 1493–1500, 2022, doi: 10.1109/TTE.2021.3111702.
[19] H. Saneie, R. Alipour-Sarabi, Z. Nasiri-Gheidari, and F. Tootoonchian, “Challenges of Finite Element Analysis of Resolvers,” IEEE Transactions on Energy Conversion, vol. 34, no. 2, pp. 973–983, 2019, doi: 10.1109/TEC.2018.2881465.
[20] Z. Nasiri-Gheidari and F. Tootoonchian, “Influence of mechanical faults on the position error of an axial flux brushless resolver without rotor windings,” IET Electr Power Appl, vol. 11, no. 4, pp. 613–621, Apr. 2017, doi: 10.1049/iet-epa.2016.0675.