Autocentralizer automorphisms of groups
Subject Areas : Group theoryF. Karimi 1 , M. M. Nasrabadi 2 , A. Kaheni 3
1 -
2 -
3 -
Keywords: Centralizer subgroup, autocentralizer subgroup, autocentralizer automorphism,
Abstract :
Let $G$ be a group and $C_G(a)$ be a normal centralizer subgroup of $G$ for some $a\in G.$ Assume that, $\Upsilon^a _2(G)= [G, C_G(a)]$ and $Aut^{\Upsilon^a _2(G)}_{Z(C_G(a))}(G)$ is the set of all automorphisms of $G$ that centralizes $\frac {G}{\Upsilon ^a_2(G)}$ and $Z(C_G(a)).$ In this paper, we focus on the group $Aut^{\Upsilon^a _2(G)}_{Z(C_G(a))}(G)$ and try to characterize its properties.
[1] Z. Azhdari, M. Akhavan Malayeri, On inner automorphisms and central automorphisms of nilpotent group of class 2, J. Algebra Appl. 10 (4) (2011), 1283-1290.
[2] Z. Azhdari, M. Akhavan-Malayeri, On certian automorphisms of nilpotent group, Math Appl. 113A (2013), 5-17.
[3] M. J. Curran, D. J. McCaughan, Central automorphisms that are almost inner, Comm. Algebra. 29 (5) (2001), 2081-2087.
[4] M. Shabani Attar, On central automorphisms that fix the center elementwise, Arch. Math. 89 (2007), 296-297.
[5] M. K. Yadav, On central automorphisms fixing the center elementwise, Comm. Algebra. 37 (2009), 4325-4331.