Occurence and Distribution of Microplastics in the Hyporheic Zone in the Ziarat River
Nasim Shabani 1 , Mehdi Meftah Halaghi 2 , Amir Ahmad Dehghani 3 , حسن رضایی 4 , محمد عبداحسینی 5
1 - Gorgan University of Agricultural Sciences and Natural Resources
2 - هیات علمی دانشگاه علوم کشاورزی و منابع طبیعی گرگان
3 - Gorgan University of Agricultural Sciences and Natural Resources
4 - دانشگاه علوم کشاورزی و منابع طبیعی گرگان
5 - استادیار گروه مهندسی آب دانشگاه گرگان
Keywords: Hyporheic Zone, Microplastic, Morphological Structures, Ziarat River,
Abstract :
The hyporheic zone (HZ) is an ecologically essential and sensitive compartment of fluvial ecosystems and is defined as the area below the streambed interface that is equally influenced by surface and groundwater flow dynamics. Microplastics (MPs) located in the HZ should face a much longer retention and thus exposure time to benthic organisms. this study investigated the distribution and characteristics of microplastic in the HZ sediment of the Ziarat River. According to the morphological characteristics, the microplastic shapes were divided into fiber, pellet, foam, and fragment. The color of microplastic particles was recorded according to the color of their surface. The size of the microparticles was measured on the longest dimension of the image, and divided into <0.5 mm, 0.5–1.0 mm, 1.0–3.0 mm, and 3.0–5.0 mm. Our analysis of MPs (500-5,000 µm) in three morphologic structures including step-pool, island and lag jams extracted for the Ziarat River showed that MPs were detectable down to a depth of 0.6 m below the streambed. Highest MP abundances were measured for pore scale particles (<1000 µm). The abundance of fiber and fragment microplastics in the three morphologic structures was the highest in most of the sediment layers, followed by line microplastics. The observed colors of microplastics in the sediment in this study mainly included black, brown, yellow, red, and orange. Among them, black color was the dominant color. These results provided insights into the understanding of the microplastic fates in a river HZ region.
علی¬محمدی، م.، کریمیان، ک. (1398) آلاینده¬های میکروپلاستیک. انتشارات آوای قلم. تهران، 352 صفحه.
یگانه¬فر، م.، شاکری، ع.، رستگاری¬مهر، م.، لاهیجانی، ا. (1399) مطالعه فراوانی و خصوصیات ذرات میکروپلاستیک به عنوان آلاینده های نوظهور در رسوبات سد طالقان و رودخانه بالادست در استان البرز ، فصلنامه سلامت و محیط¬زیست، 13(1): 63-74.
Arias-Andres, M., Kettner, M. T., Miki, T. and Grossart, H. P. (2018) Microplastics: New substrates for heterotrophic activity contribute to altering organic matter cycles in aquatic ecosystems. Science of the Total Environment, 635: 1152-1159.
Arthur, C., Baker, J. E. and Bamford, H. A. (2009) Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris, September 9-11, 2008, University of Washington Tacoma, Tacoma, WA, USA.
Avio, C. G., Gorbi, S. and Regoli, F. (2015) Experimental development of a new protocol for extraction and characterization of microplastics in fish tissues: first observations in commercial species from Adriatic Sea. Marine environmental research, 111: 18-26.
Ballent, A., Corcoran, P. L., Madden, O., Helm, P. A. and Longstaffe, F. J. (2016) Sources and sinks of microplastics in Canadian Lake Ontario nearshore, tributary and beach sediments. Marine pollution bulletin, 110(1): 383-395.
Bao, M., Xiang, X., Huang, J., Kong, L., Wu, J. and Cheng, S. (2023) Microplastics in the atmosphere and water bodies of coastal agglomerations: A mini-review. International Journal of Environmental Research and Public Health, 20(3): 2466.
Buss, S., Cal, Z., Cardenas, B., Fieckenstein, J., Hannah, D., Heppell, K., Hulme, P., Ibrahim, T., Kaeser, D., Krause, S., Lawier, D., Lerner, D., Mant, J., Malcolm, I., Old, G., Parkin, G., Pickup, R., Pinay, G., Porter, J., Rhodes, G., Richie, A., Riley, J., Robertson, A., Sear, D., Shields, B., Smith, J., Tellam, J., Wood, P. (2009) The Hyporheic Handbook. A Handbook on the Groundwater-Surfacewater Interface and Hyportheic Zone for Environment Managers. Integrated Catchment Science Programme. Science report: SC050070. Environment Agency, Bristol.
Capozzi, F., Carotenuto, R., Giordano, S. and Spagnuolo, V. (2018) Evidence on the effectiveness of mosses for biomonitoring of microplastics in fresh water environment. Chemosphere, 205: 1-7.
Claessens, M., Van Cauwenberghe, L., Vandegehuchte, M. B. and Janssen, C. R. (2013) New techniques for the detection of microplastics in sediments and field collected organisms. Marine pollution bulletin, 70(1-2):227-233.
Cole, M. and Galloway, T. S. (2015) Ingestion of nanoplastics and microplastics by Pacific oyster larvae. Environmental science & technology, 49(24): 14625-14632.
Cole, M., Lindeque, P., Halsband, C. and Galloway, T. S. (2011) Microplastics as contaminants in the marine environment: A review. Marine Pollution Bulletin, 62: 2588–2597.
Coppock, R. L., Cole, M., Lindeque, P. K., Queirós, A. M. and Galloway, T. S. (2017) A small-scale, portable method for extracting microplastics from marine sediments. Environmental Pollution, 230: 829-837.
Doughty, M., Sawyer, A. H., Wohl, E. and Singha, K. (2020) Mapping increases in hyporheic exchange from channel-spanning logjams. Journal of Hydrology, 124931.
Drummond, J. D., Nel, H. A., Packman, A. I. and Krause, S. (2020) Significance of hyporheic exchange for predicting microplastic fate in rivers. Environmental Science & Technology Letters, 7(10): 727-732.
Eerkes-Medrano, D., Thompson, R. C. and Aldridge, D. C. (2015) Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water research, 75: 63-82.
Frei, S., Piehl, S., Gilfedder, B. S., Löder, M. G. J., Krutzke, J., Wilhelm, L. and Laforsch, C. (2019) Occurence of microplastics in the hyporheic zone of rivers. Scientific reports, 9(1): 1-11.
Ganie, Z. A., Mandal, A., Arya, L., Sangeetha, T., Talib, M. and Darbha, G. K. (2024) Assessment and accumulation of microplastics in the Indian riverine systems: Risk assessment and implications of translocation across the water-to-fish continuum. Aquatic Toxicology, 272: 106944.
He, B., Wijesiri, B., Ayoko, G. A., Egodawatta, P., Rintoul, L. and Goonetilleke, A. (2020) Influential factors on microplastics occurrence in river sediments. Science of The Total Environment, 738: 139901.
Hernandez, E., Nowack, B. and Mitrano, D. M. (2017) Polyester textiles as a source of microplastics from households: a mechanistic study to understand microfiber release during washing. Environmental science & technology, 51(12): 7036-7046.
Horton, A. A., Svendsen, C., Williams, R. J., Spurgeon, D. J. and Lahive, E. (2017) Large microplastic particles in sediments of tributaries of the River Thames, UK–Abundance, sources and methods for effective quantification. Marine pollution bulletin, 114(1): 218-226.
Hurley, R., Woodward, J. and Rothwell, J. J. (2018) Microplastic contamination of river beds significantly reduced by catchment-wide flooding. Nature Geoscience, 11(4): 251-257.
Kershaw, P. J. and Rochman, C. M. (2015) Sources, fate and effects of microplastics in the marine environment: part 2 of a global assessment. Reports and Studies-IMO/FAO/Unesco-IOC/WMO/IAEA/UN/UNEP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP) Eng No. 93.
Klein, S., Worch, E. and Knepper, T. P. (2015) Occurrence and spatial distribution of microplastics in river shore sediments of the Rhine-Main area in Germany. Environmental science & technology, 49(10): 6070-6076.
Millington, C. E. and Sear, D. A. (2007) Impacts of river restoration on small wood dynamics in a low gradient headwater stream. Earth Surface Processes and Landforms, 32(8): 1204-1218.
Nam, S. H., Kim, S. A., Lee, T. Y. and An, Y. J. (2023) Understanding hazardous concentrations of microplastics in fresh water using non-traditional toxicity data. Journal of Hazardous Materials, 445: 130532.
Neves, D., Sobral, P., Ferreira, J. L. and Pereira, T. (2015) Ingestion of microplastics by commercial fish off the Portuguese coast. Marine pollution bulletin, 101(1): 119-126.
Obbard, R. W., Sadri, S., Wong, Y. Q., Khitun, A. A., Baker, I. and Thompson, R. C. (2014) Global warming releases microplastic legacy frozen in Arctic Sea ice. Earth's Future, 2(6): 315-320.
Orghidan, T. (1959) Ein neuer Lebensraum des unterirdischen Wassers: der hyporheische Biotop. Arch. Hydrobiol, 55(3): 392-414.
PlasticsEurope, E. P. R. O. (2016) Plastics-the facts 2016. An analysis of European plastics production, demand and waste data. Plastics Europe.
Poole, G. C., O'daniel, S. J., Jones, K. L., Woessner, W. W., Bernhardt, E. S., Helton, A. M., … and Beechie, T. J. (2008) Hydrologic spiralling: the role of multiple interactive flow paths in stream ecosystems. River Research and Applications, 24(7): 1018-1031.
Rasta, M., Sattari, M., Taleshi, M. S. and Namin, J. I. (2020) Identification and distribution of microplastics in the sediments and surface waters of Anzali Wetland in the Southwest Caspian Sea, Northern Iran. Marine Pollution Bulletin, 160: 111541.
Singha, K., Doughty, M., McFadden, S., Hucks Sawyer, A. and Wohl, E. (2020) Mapping increases in hyporheic exchange from channel-spanning logjams. In EGU General Assembly Conference Abstracts (p. 1342).
Van Cauwenberghe, L., Vanreusel, A., Mees, J. and Janssen, C. R. (2013) Microplastic pollution in deep-sea sediments. Environmental pollution, 182: 495-499.
Van Franeker, J. A., Blaize, C., Danielsen, J., Fairclough, K., Gollan, J., Guse, N., ... and Olsen, B. (2011) Monitoring plastic ingestion by the northern fulmar Fulmarus glacialis in the North Sea. Environmental pollution, 159(10): 2609-2615.
Wagner, S., Klockner, P., Stier, B., Römer, M., Seiwert, B., Reemtsma, T. and Schmidt, C. (2019) Relationship between discharge and river plastic concentrations in a rural and an urban catchment. Environmental science & technology, 53(17): 10082-10091.
Wang, J. et al. Microplastics in the surface sediments from the Beijiang River littoral zone: composition, abundance, surface textures and interaction with heavy metals. Chemosphere 171: 248–258 (2017).
Ward, A. S. (2016) The evolution and state of interdisciplinary hyporheic research. Wiley Interdisciplinary Reviews: Water, 3(1): 83-103.
Woessner, W. W. (2017) Hyporheic zones. In Methods in Stream Ecology, Volume 1 (pp. 129-157). Academic Press.
Wondzell, S. M. and Gooseff, M. N. (2013) 9.13 Geomorphic controls on hyporheic exchange across scales: Watersheds to particles. Treatise on geomorphology, 203-218.
Yan, M., Nie, H., Xu, K., He, Y., Hu, Y., Huang, Y. and Wang, J. (2019) Microplastic abundance, distribution and composition in the Pearl River along Guangzhou city and Pearl River estuary, China. Chemosphere, 217: 879-886.
Yang, L., Kang, S., Luo, X. and Wang, Z. (2024) Microplastics in drinking water: A review on methods, occurrence, sources, and potential risks assessment. Environmental Pollution, 123857.
Yeganeh, F. M., Shakeri, A., Rastegari, M. M. and Lahijani, O. (2020) Investigating abundance and characteristics of microplastics as emerging pollutants in sediments of Taleqan dam and upstream river in Alborz province.
Yurtsever, M. and Cüvelek, M. A. (2024) Abundance of microplastics in the agro-industrial product beet sugar; food or plastifood. Process Safety and Environmental Protection.
Zeng, J., Wu, W., Chen, X., Wang, S., Wu, H., El-Kady, A. A., ... and Zhang, Z. (2024) A smartphone-assisted photoelectrochemical POCT method via Z-scheme CuCo2S4/Fe3O4 for simultaneously detecting co-contamination with microplastics in food and the environment. Food Chemistry, 452: 139430.
Zhou, Q., Zhang, H., Fu, C., Zhou, Y., Dai, Z., Li, Y., ... and Luo, Y. (2018) The distribution and morphology of microplastics in coastal soils adjacent to the Bohai Sea and the Yellow Sea. Geoderma, 322: 201-208.