Removal Propargite pesticide from aqueous solution using Penta Aza Tetra Ethylene on Polyacrylamide (PAA-N5) as a novel adsorbent
Subject Areas : journal of New MaterialsSeyed Yaghoub Krimi 1 , Safar marofi 2 , Mohammad Ali Zare 3
1 - PhD Student, Water Engineering Department, Bu-Ali Sina University, Hamedan, Iran.
2 - استاد
3 - Department of chemistry.Marvdasht Islamic Azad University,
Keywords: Adsorption, Isotherms models, Kinetics models, Propargite,
Abstract :
Introduction and purpose: Entering environmental pollutants into water resources have harmful effects on human health and environment. In recent years, adsorption methods using adsorbents to remove contaminants from water resources have been abundant. Pentaaza tetra ethylene supported polyacrylamide (PAA-N5) as a novel adsorbent can be effective for removal of chemical pollutants of the aquatic solution. The purpose of this research is removal of Propargite by PAA-N5 as an adsorbent from polluted water in vitro.
Methods: The effects of variables such as pH, contact time, initial concentration, adsorbent amount, efficiency in removing Propargite from contaminated water were studied. Isotherms of Langmuir, Freundlich and Temkin have been fitted with the data of experiment. In addition, kinetics of pseudo- first order, pseudo- second order, intra-particle diffusion and Elovich were also fitted with the experiment data. Graphs and data analyses have been done using office program.
Results: For PAA-N5, Langmuir isotherms show good agreement with the experimental data. Using these models to maximize absorption capacity of 294.11 (mg g-1) for PAA-N5. Absorption rates show quick responses and less than one hours. The results showed that the adsorption kinetics of pseudo- second order is more consistent (R2=0.99).
Conclusion: The results show that PAA-N5 absorbent is effective in removing Propargite contaminants from the aqueous solutions due to high surface area and rapid kinetics of the reactions. Therefore, the use of this adsorbent is recommended to remove Propargite from aqueous solutions.
1- C.A. Orge, M.F.R. Pereira, J.L. Faria, "Photocatalyticassisted ozone degradation of metolachlor aqueous solution", Chemical Engineering Journal, 318,247-53, 2017.
2- N.Singh, "Adsorption of herbicides on coal fly ash from aqueous solutions. Journal of Hazardous Materials",168(1), 233-37.2009.
3- G. Kyzas, M. Kostoglou, "An Open Access Materials Science Journal from MDPI", 7, 333, 2014.
4- م. خانجانی، ع . پورمیرزا، "سم شناسی"، چاپ پنجم، انتشارات دانشگاه بوعلی سینا، سال 1396.
5- P. Parkpian, P. Anurakpongsatorn, P. Pakkong, W. H. Patrick, "Adsorption, desorption and degradation of α-endosulfan in tropical soils of thailand", J. Environ. SCI. Health. B33(3), 211-23. 1998.
6- K.S. Ryoo, S.Y. Jung, H. Sim, J.Choi, "Comparative study on adsorptive characteristics of diazinon in water by various adsorbents", Bull Korean Chem Soc, 34(3), 2753-59, 2013.
7- S.V. Jadhav, E. Bringas, G.D. Yadav, V. K. Rathod, I. Ortiz, K.V. "Marathe, Arsenic and fluoride contaminated groundwaters: a review of current technologies for contaminants removal", Journal of Environmental Management, 162, 306-325. 2015.
8. D. Farmanzadeh, H. Rezainejad, "Study of Adsorption of Diazinon, Hinosan, Chlorpyrifos and Parathion Pesticides on the Surface of B36N36 Nanocage and Its Fe Doped Derivatives as New Adsorbents", Acta Phys-Chim Sin,;32, 2016.
9- M. Moazeni, A. Ebrahimi, N. Rafiei, HR. Pourzamani, "Removal of arsenic (iii) and chromium (vi) from aqueous solutions using nanoscale zerovalent iron (NZVI) particles and determining adsorption isotherms", J Health Syst Res, 13(1), 126-33, 2017.
10- K. Vinod, A. Imran, Removal of Endosulfan and Methoxychlor from Water on Carbon Slurry. Environ. Sci. Technol. 42 (3), pp 766–770, 2008.
11- ک. رضایی، ه. پورباقری، آ. خویی جوانشیر، و. جعفرزاده، "به کارگیری روشهای تصفیه فیزیکی و زیستی برای حذف سموم کشاورزی دیازینون و مالاتیون در آب، شیلات، مجله منابع طبیعی ایران، " دوره 70 ، شماره 3. سال 1396.
12- H, Arsène, H. A, Yonli., K, Jean, "α-Endosulfan Removal from Water by Adsorption over Natural Clays from Burkina Faso: An Isothermal Study", Journal of Materials Science and Chemical Engineer. Vol 2, No. 11. 2014.
13- D. K. Deepika, D. Anil, "Efficacy of various biosorbents for removal of endosulfan from water environment", Volume 6, Issue 3. 2014.
14- A. Saha, V. Gajbhiye, T. K. Suman, G. Rajesh, K. Rakesh Simultaneous Removal of Pesticides from Water by Rice Husk Ash: Batch and Column Studies. Volume 86. Number 11. pp. 2176-2185, 2014.
15- C. Shen, Y. Wen, X. Kang, W. Liu, "Chemical Engineering Journal", 166:474, 2011.
16- CA. Finch, "Specialty polymers", New York, Wiley,1982.
17- A. A. Fauze, P. Zhongli, J. O. William, H. C. M. Luiz. "Removal of Paraquat Pesticide from Aqueous Solutions Using a Novel Adsorbent Material Based on Polyacrylamide and Methylcellulose Hydrogel", Published online 2 July 2009 in Wiley InterScience (www.interscience.wiley.com).
18- م. ایران پور، ع. فدوی، م.ع. زارع، م. عمادی، "حذف رنگ از محلولهای آبی توسط پنتا آزا تترا اتیلن ساپورت شده بر روی پلی اکریل آمید به عنوان یک جاذب جدید: بررسی سینتیک و ایزوترم جذبی،" مجله مواد نوین، جلد 8، شماره 1. سال 1396.
19- M. A. Zare, S. W. Husain, M. S. Tehrani, P. A. Azar, "Pentaazatetraethylene supported polyacrylamide (PAA-N5) as a novel adsorbent for the efficient removal of industrial dyes from aqueous solutions: adsorption isotherms and kinetics", Monatsh Chem 148, 191–197, 2017.
20- M. Friedman, and L.J. Savage, "Planning Experiments Seeking Maxima, in Techniques of Statistical Analysis", eds. C. Eisenhart, M. W. Hastay, and W. A. Wallis, New York, McGraw-Hill, pp. 365-372, 1947.
21- S. Lagergren, "Zur theorie der sogenennten adsorption geloster stoffe, Kungliga. Svenska vetenskademiens", Handlingar, 24, 1–39. 1898.
22- G. Mckay, Y.S. Ho, "Pseudo-second order model for sorption processes", Biochem, 34, 451–465, 1999.
23- W.J. Weber, J.C. Morris, "Kinetics of adsorption on carbon fromsolution", J. Santi. Eng. Div. ASCE, 89 (SA2), 31–59, 1963.
24- I. Langmuir, "The constitution and fundamental properties of solids and liquids", J. Am. Chem. Soc, 38, 2221–229, 1916.
25- H. M. F. Freundlich, "Over the adsorption in solution", The Journal of Physical Chemistry, vol. 57, pp. 384–47, 1906.
26- M.J. Temkin, V. Pyzhev, "Recentmodification to Langmiur isotherms", Acta Phys-iochim, USSR 12, 217–222و 1940.
27- FH, Li, Y, Bao. J, Chai. QX, Zhang. DX, Han. L, Niu. Langmuir 26:12314. 2010.
28- SD, Deng. XH, Li. H, Fu Corros. Sci. 53:760, 2011.
29- M, Emadi. M.A, Zare. Separating Fuchsin from the Contaminated Water with the Application of Rice Crust as a Low- Cost Bioactive Absorber. J of Water Res Eng 2010; 4.
30- N. Azouaou, Z. Sadaoui, A. Djaafri, H. Mokaddem, "Adsorption of cadmium from aqueous solution onto untreated coffee grounds: Equilibrium, kinetics and thermodynamics", J. of Hazard. Mater., 184, 126-134, 2010.
31- O, GA. S K. "Removal of Reactive Red 198 from aqueous solution by Potamogeton crispus", Chemical Engineering Journal, 174(2–3), 579-8, 2011.
32- Y. Bulut, Z. Baysal, "Removal of Pb (II) from wastewater using wheat bran. Journal of environmental management", 78(2), 107-113, 2006.
33- MA. Zazouli, Z. Yousefi, aY. Cherati, H. Tabarinia, F. Tabarinia, BA. Adergani, "Evaluation of LCysteine Functionalized Single-Walled Carbon Nanotubes on Mercury Removal from Aqueous Solutions" J Mazand Univ Med Sci; 24(109):10-21, 2014.
34- H. Zheng, L. Han, H. Ma, Y. Zheng, H. Zhang, D. Liu & S. Liang Adsorption characteristics of ammonium ion by zeolite 13X. Journal of Hazardous Materials 158(2), 577–584, 2008.
35- R. Boopathy, S. A. Karthikeyan, B. Mandal & G. Sekaran. Adsorption of ammonium ion by coconut shell-activated carbon from aqueous solution: kinetic, isotherm, and thermodynamic studies. Environ. Environmental Science and Pollution Research 20(1), 533–542, 2013.
_||_