Subject Areas : Journal of Optoelectronical Nanostructures
1 - Department of physics, Faculty of science, Imam Khomeini International University, Qazvin, Iran
Keywords:
Abstract :
[1] M. I. Katsnelson, K. S. Novoselov and A. K. Geim, Chiral tunnelling and the Klein paradox in graphene, Nature Physics, 2 (2006) 620 - 625.
[2] N. M. R. Peres, Colloquium: The transport properties of graphene: An introduction, Rev. Mod. Phys. 82 (2010) 2673.
[3] M. I. Katsnelson, Graphene: Carbon in Two Dimensions (Cambridge University Press, 2012).
[4] J. H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams, M. Ishigami ,Charged-impurity scattering in graphene,Nature Physics, 4 (2008) 377 - 381.
[5] B. Huard, J. A. Sulpizio, N. Stander, K. Todd, B. Yang, and D. Goldhaber-Gordon,Transport Measurements Across a Tunable Potential Barrier in Graphene ,Phys. Rev. Lett. 98 (2007) 236803 .
[6] E. R. Mucciolo, C. H. Lewenkopf., disorder and electronic transport in graphene, J. Phys. Condens. Matter 22 (2010) 273201
[7] C. H. Lewenkopf, E. R. Mucciolo, The recursive Greens function method for graphene, Journal of Computational Electronics, 12 (2013) 203-231.
[8] D. Gunlycke and C. T. White, Specular graphene transport barrier, Phys. Rev. B 90 (2014) 035452 .
[9] K. Sasaki, K. Wakabayashi, and T. Enoki, Electron Wave Function in Armchair Graphene Nanoribbons,J. Phys. Soc. Jpn. 80 (2011) 044710.
[10] J. A. Lawlora, M. S. Ferreir, Green functions of graphene: An analytic approach, Physica B: Condensed Matter, 463 (2015) 4853.
[11] D. Klpfer, A. D. Martino, D. U. Matrasulov, R. Egger, Scattering theory and ground-state energy of Dirac fermions in graphene with two Coulomb impurities, Eu. Phys. J. B 87 (2014) 187.
[12] E. V. Gorbar, V. P. Gusynin and O. O. Sobol, Supercritical electric dipole and migration of electron wave function in gapped graphene, EPL (Europhysics Letters), 111 (2015) 3.
[13] B R K Nanda, M Sherafati, Z S Popovi and S Satpathy, Electronic structure of the substitu-tional vacancy in graphene: density-functional and Green's function studies, New J. of Phys., 14 (2012) .
[14] E. H. Hwang, S. Adam, and S. D. Sarma ,Carrier Transport in Two-Dimensional Graphene layers, Phys. Rev. Lett. 98, 186806 (2007) 1-4.
[15] Z. Rashidian, F. M. Mojarabian, P. Bayati, G. Rashedi, A. Ueda and T. Yokoyama, Conductance and Fano factor in normal/ferromagnetic/normal bilayer graphene junction, J. Phys: Condens. Matter 26 (2014) 25530211
[16] Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. D Sarma, H. L. Stormer, and P. Kim, Measurement of Scattering Rate and Minimum Conductivity in Graphene , Phys. Rev. Lett. 99 (2007) 246803.
[17] M. I. Katsnelson, Zitterbewegung, chirality and minimal conductivity in graphene, The Eu-ropean Physical Journal B Condensed Matter and Complex Systems 51 (2006) 157-160.
[18] K. Ziegler, Minimal conductivity of graphene: Nonuniversal values from the Kubo formula, Phys. Rev. B 75 (2007) 233407.
[19] X. Du, I. Skachko, A. Barker, E. Y. Andrei, Approaching ballistic transport in suspended graphene, Nature Nanotechnology, 3 (2008) 491 - 495 .
[20] A. R. Mitchell, D. F. Griffiths, The finite difference method in partial differential equations, New York: John Wiley (1980).
[21] R. landaure, spatial variation of currents and fields due to localized scatters in metallic conduction, IBM J. RES. Develop. 32 (1988) 306.