Subject Areas : Journal of Optoelectronical Nanostructures
tajedin derikvand 1 , Rajab Ali Kamyabi-Gol 2 , mohammad janfada 3
1 - nternational Campus, Faculty of Mathematic Sciences, Ferdowsi University
of Mashhad
2 - Department of Pure Mathematics and Centre of Excellence in Analysis on
Algebraic Structures (CEAAS), Ferdowsi University of Mashhad
3 - Department of Pure Mathematics, Ferdowsi University of Mashhad
Keywords:
Abstract :
[1] A. Authier, “Optical properties of X-rays - dynamical diffraction,” Acta
Crystallographica A68, 40 (2012).
[2] H.J. Bunge, Mathematische Methoden der Texturanalyse, Akademie Verlag, Berlin,
1969.
[3] W. Cheney,W. Light, A Course in Approximation Theory, Brookes/Cole, Pacific
Groove, CA, 1999.
[4] S. R. Deans, The Radon transform and some of its applications, Wiley, New York,
1983.
[5] C. L. Epstein, Charles L. Introduction to the Mathematics of Medical Imaging. 2nd
ed. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2008.
[6] G. B. Folland, A Course in Abstract Harmonic Analysis, CRC Press, Boca Raton,
1995.
[7] C. Hammond. The Basics of Crystallography and Diffraction. Oxford University
Press, 1997.
[8] S. Helgason, Integral Geometry and Radon Transform, Springer, New York, 2011.
[9] J. Imhof, Determination of the Orientation Distribution Function from One Pole- ,
texture and microstructures, (1982). 5, 73–86
[10] A. B. Sekerin, Euclidean Motion Group Representations and the Singular Value
Decomposition of the Radon Transform, Integral Transforms and Spacial Functions.
00 (2005) 1-34.
[11] I. A. Vartanyants, “Coherent X-ray Diffraction Imaging of Nanostructures,”
arXiv:1304.5335 (2013).
[12] R. O. Williams, Analytical Methods for Representing Complex Textures by Biaxial
Pole Figures, (1968), 39, 4329-4335.
[13] H. Yan, and L. Li, “X-ray dynamical diffraction from single crystals with arbitrary
shape and strain field: A universal approach to modeling,” Phys. Rev. B 89, 014104
(2014).